Skip to main content
Log in

Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ever-increasing demand for bone grafts necessitates the realization of clinical implementation of bone tissue engineered constructs. The predominant hurdle to implementation remains to be securing FDA approval, based on the lack of viable methods for the rigorous monitoring of said constructs. The study presented herein details a method for such monitoring based on the shifting metabolism of mesenchymal stem cells (MSCs) as they differentiate into osteoblasts. To that end, rat MSCs seeded on 85% porous spunbonded poly(L-lactic acid) scaffolds were cultured in flow perfusion bioreactors with baseline or osteoinductive media, and levels of key physio-metabolic markers (oxygen, glucose, osteoprotegerin, and osteocalcin) were monitored throughout culture. Comparison of these non-destructively obtained values and current standard destructive analyses demonstrated key trends useful for the concurrent real-time monitoring of construct cellularity and maturation. Principle among these is the elucidation of the ratio of the rates of oxygen uptake to glucose consumption as a powerful quality marker. This ratio, supported on a physiological basis, has been shown herein to be reliable in the determination of both construct maturation (defined as osteoblastic differentiation and accompanying mineralization) and construct cellularity. Supplementary monitoring of OPG and OCN are shown to provide further validation of such metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alvarez-Barreto, J. F., S. M. Linehan, R. L. Shambaugh, and V. I. Sikavitsas. Flow perfusion improves seeding of tissue engineering scaffolds with different architectures. Ann. Biomed. Eng. 35:429–442, 2007.

    Article  PubMed  Google Scholar 

  2. Amini, A. R., C. T. Laurencin, and S. P. Nukavarapu. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 40:363–408, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bancroft, G. N., V. I. Sikavitsas, and A. G. Mikos. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 9:549–554, 2003.

    Article  CAS  PubMed  Google Scholar 

  4. Bone Graftat. http://www.healthline.com/health/bone-graft.

  5. Chemistry, I. U. of P. and A. IUPAC Gold Book—Stern–Volmer kinetic relationshipsat. https://goldbook.iupac.org/html/S/S06004.html.

  6. Chen, C.-T., Y.-R. V. Shih, T. K. Kuo, O. K. Lee, and Y.-H. Wei. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26:960–968, 2008.

    Article  CAS  PubMed  Google Scholar 

  7. dos Santos, F., P. Z. Andrade, J. S. Boura, M. M. Abecasis, C. L. da Silva, and J. M. S. Cabral. Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. J. Cell. Physiol. 223:27–35, 2010.

    PubMed  Google Scholar 

  8. Gómez-Barrena, E., P. Rosset, D. Lozano, J. Stanovici, C. Ermthaller, and F. Gerbhard. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone 70:93–101, 2015.

    Article  PubMed  Google Scholar 

  9. Guaccio, A., C. Borselli, O. Oliviero, and P. A. Netti. Oxygen consumption of chondrocytes in agarose and collagen gels: a comparative analysis. Biomaterials 29:1484–1493, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Komarova, S. V., F. I. Ataullakhanov, and R. K. Globus. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am. J. Physiol.-Cell Physiol. 279:C1220–C1229, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Krizan, S. J. The role of adhesion strength in human mesenchymal stem cell osteoblastic differentiation on biodegradable polymers., 2009.at https://deepblue.lib.umich.edu/bitstream/handle/2027.42/62260/skrizan_1.pdf;sequence=1.

  12. Malda, J., T. B. F. Woodfield, F. van der Vloodt, F. K. Kooy, D. E. Martens, J. Tramper, C. A. van Blitterswijk, and J. Riesle. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials 25:5773–5780, 2004.

    Article  CAS  PubMed  Google Scholar 

  13. Maniatopoulos, C., J. Sodek, and D. A. H. Melcher. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 254:317–330, 1988.

    Article  CAS  PubMed  Google Scholar 

  14. Meuwly, F., F. Papp, P.-A. Ruffieux, A. R. Bernard, A. Kadouri, and U. von Stockar. Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors. J. Biotechnol. 122:122–129, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. Mikos, A. G., M. D. Lyman, L. E. Freed, and R. Langer. Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15:55–58, 1994.

    Article  CAS  PubMed  Google Scholar 

  16. Nehring, D., P. Adamietz, N. M. Meenen, and R. Pörtner. Perfusion cultures and modelling of oxygen uptake with three-dimensional chondrocyte pellets. Biotechnol. Tech. 13:701–706, 1999.

    Article  CAS  Google Scholar 

  17. Oryan, A., S. Alidadi, and A. Moshiri. Current concerns regarding healing of bone defects. Hard Tissue 2(2):1–12, 2013.

    Article  Google Scholar 

  18. Oryan, A., S. Alidadi, A. Moshiri, and N. Maffulli. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop. Surg. 9:18, 2014.

    Article  Google Scholar 

  19. Pattappa, G., H. K. Heywood, J. D. de Bruijn, and D. A. Lee. The metabolism of human mesenchymal stem cells during proliferation and differentiation. J. Cell. Physiol. 226:2562–2570, 2011.

    Article  CAS  PubMed  Google Scholar 

  20. Roberts, T. T., and A. J. Rosenbaum. Bone grafts, bone substitutes and orthobiologics. Organogenesis 8:114–124, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Santoro, R., C. Krause, I. Martin, and D. Wendt. On-line monitoring of oxygen as a non-destructive method to quantify cells in engineered 3D tissue constructs. J. Tissue Eng. Regen. Med. 6:696–701, 2012.

    Article  CAS  PubMed  Google Scholar 

  22. Sart, S., S. N. Agathos, and Y. Li. Process engineering of stem cell metabolism for large scale expansion and differentiation in bioreactors. Biochem. Eng. J. 84:74–82, 2014.

    Article  CAS  Google Scholar 

  23. Schop, D., F. W. Janssen, L. D. S. van Rijn, H. Fernandes, R. M. Bloem, J. D. de Bruijn, and R. van Dijkhuizen-Radersma. Growth, metabolism, and growth inhibitors of mesenchymal stem cells. Tissue Eng. Part A 15:1877–1886, 2009.

    Article  CAS  PubMed  Google Scholar 

  24. Shyh-Chang, N., G. Q. Daley, and L. C. Cantley. Stem cell metabolism in tissue development and aging. Development 140:2535–2547, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simmons, A. D., C. Williams III, A. Degoix, and V. I. Sikavitsas. Sensing metabolites for the monitoring of tissue engineered construct cellularity in perfusion bioreactors. Biosens: Bioelectron, 2017. doi:10.1016/j.bios.2016.09.094.

    Google Scholar 

  26. Tang, D., R. S. Tare, L.-Y. Yang, D. F. Williams, K.-L. Ou, and R. O. C. Oreffo. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83:363–382, 2016.

    Article  CAS  PubMed  Google Scholar 

  27. Tissue Engineering. https://www.nibib.nih.gov/research-funding/tissue-engineering.

  28. VanGordon, S. B., R. S. Voronov, T. B. Blue, R. L. Shambaugh, D. V. Papavassiliou, and V. I. Sikavitsas. Effects of scaffold architecture on preosteoblastic cultures under continuous fluid shear. Ind. Eng. Chem. Res. 50:620–629, 2011.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Oklahoma Center for the Advancement of Science and Technology. (Grant # HR13-214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios I. Sikavitsas.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simmons, A.D., Sikavitsas, V.I. Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells. Ann Biomed Eng 46, 37–47 (2018). https://doi.org/10.1007/s10439-017-1937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1937-y

Keywords

Navigation