Annals of Biomedical Engineering

, Volume 45, Issue 12, pp 2911–2920 | Cite as

In Vivo Strain Analysis of Dilated Ascending Thoracic Aorta by ECG-Gated CT Angiographic Imaging

  • Salvatore PastaEmail author
  • Valentina Agnese
  • Marzio Di Giuseppe
  • Giovanni Gentile
  • Giuseppe M. Raffa
  • Diego Bellavia
  • Michele Pilato


Accurate assessment of aortic extensibility is a requisite first step for elucidating the pathophysiology of an ascending thoracic aortic aneurysm (ATAA). This study aimed to develop a framework for the in vivo evaluation of the full-field distribution of the aortic wall strain by imaging analysis of electrocardiographic- (ECG) gated thoracic data of 34 patients with ATAA. Seven healthy controls (i.e., non-aneurysmal aorta) from patients who underwent ECG-gated CT angiography for coronary artery diseases were included for comparison. To evaluate the systolic function, ECG-gated computed tomography (CT) angiography was used to generate patient-specific geometric meshes of the ascending aorta, and then to estimate both the displacement and strain fields using a mathematical algorithm. Results evidenced stiff behavior for the aneurysmal aorta compared with that of the healthy ascending aorta of the controls, with patients over 55 years of age displaying significantly lower extensibility. Moreover, the patient risk as quantified by the ratio of in vivo strain to the ruptured one increased significantly with increased systolic blood pressure, older age, and higher pressure-strain modulus. Statistical analysis also indicated that an increased pressure-strain modulus is a risk factor for ATAAs with bicuspid aortic valve, suggesting a different mechanism of failure in these patients. The approach here proposed for the in vivo evaluation of the aortic wall strain is simple and fast, with promising applicability in routine clinical imaging, and could be used to develop a rupture potential criterion on the basis of the aortic aneurysm extensibility.


Ascending thoracic aortic aneurysm strain ECG-gated CT angiography Rupture risk Bicuspid aortic valve 



This work was supported by a “Ricerca Finalizzata” grant from the Italian Ministry of Health (GR-2011-02348129) to Salvatore Pasta, and by the Fondazione Ri.MED for research on aneurysm biomechanics.


  1. 1.
    Dandel, M., H. Lehmkuhl, C. Knosalla, N. Suramelashvili, and R. Hetzer. Strain and strain rate imaging by echocardiography—basic concepts and clinical applicability. Curr Cardiol Rev 5:133–148, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    de Beaufort, H. W., F. J. Nauta, M. Conti, E. Cellitti, C. Trentin, E. Faggiano, G. H. van Bogerijen, C. A. Figueroa, F. L. Moll, J. A. van Herwaarden, F. Auricchio, and S. Trimarchi. Extensibility and distensibility of the thoracic aorta in patients with aneurysm. Eur J Vasc Endovasc Surg 53:199–205, 2017.CrossRefPubMedGoogle Scholar
  3. 3.
    Duprey, A., O. Trabelsi, M. Vola, J. P. Favre, and S. Avril. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater 42:273–285, 2016.CrossRefPubMedGoogle Scholar
  4. 4.
    Elefteriades, J. A., and E. A. Farkas. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Cardiol 55:841–857, 2010.CrossRefPubMedGoogle Scholar
  5. 5.
    Girdauskas, E., M. Rouman, K. Disha, B. Fey, G. Dubslaff, B. Theis, I. Petersen, M. Gutberlet, M. A. Borger, and T. Kuntze. Functional aortic root parameters and expression of aortopathy in bicuspid versus tricuspid aortic valve stenosis. J Am Coll Cardiol 67:1786–1796, 2016.CrossRefPubMedGoogle Scholar
  6. 6.
    Haraldsson, H., M. Hope, G. Acevedo-Bolton, E. Tseng, X. Zhong, F. H. Epstein, L. Ge, and D. Saloner. Feasibility of asymmetric stretch assessment in the ascending aortic wall with DENSE cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16:6, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hill, M. R., X. Duan, G. A. Gibson, S. Watkins, and A. M. Robertson. A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J Biomech 45:762–771, 2012.CrossRefPubMedGoogle Scholar
  8. 8.
    Isselbacher, E. M. Thoracic and abdominal aortic aneurysms. Circulation 111:816–828, 2005.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim, K. H., J. C. Park, H. J. Yoon, N. S. Yoon, Y. J. Hong, H. W. Park, J. H. Kim, Y. Ahn, M. H. Jeong, J. G. Cho, and J. C. Kang. Usefulness of aortic strain analysis by velocity vector imaging as a new echocardiographic measure of arterial stiffness. J Am Soc Echocardiogr 22:1382–1388, 2009.CrossRefPubMedGoogle Scholar
  10. 10.
    Koullias, G., R. Modak, M. Tranquilli, D. P. Korkolis, P. Barash, and J. A. Elefteriades. Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. J Thorac Cardiovasc Surg 130:677–683, 2005.CrossRefPubMedGoogle Scholar
  11. 11.
    Krishnan, K., L. Ge, H. Haraldsson, M. D. Hope, D. A. Saloner, J. M. Guccione, and E. E. Tseng. Ascending thoracic aortic aneurysm wall stress analysis using patient-specific finite element modeling of in vivo magnetic resonance imaging. Interact Cardiovasc Thorac Surg 21:471–480, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Martin, C., W. Sun, T. Pham, and J. Elefteriades. Predictive biomechanical analysis of ascending aortic aneurysm rupture potential. Acta Biomater 9:9392–9400, 2013.CrossRefPubMedGoogle Scholar
  13. 13.
    Martin, C., W. Sun, C. Primiano, R. McKay, and J. Elefteriades. Age-dependent ascending aorta mechanics assessed through multiphase CT. Ann Biomed Eng 41:2565–2574, 2013.CrossRefPubMedGoogle Scholar
  14. 14.
    Morrison, T. M., G. Choi, C. K. Zarins, and C. A. Taylor. Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes. J Vasc Surg 49:1029–1036, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nathan, D. P., C. Xu, J. H. Gorman, III, R. M. Fairman, J. E. Bavaria, R. C. Gorman, K. B. Chandran, and B. M. Jackson. Pathogenesis of acute aortic dissection: a finite element stress analysis. Ann Thorac Surg 91:458–463, 2011.CrossRefPubMedGoogle Scholar
  16. 16.
    Nathan, D. P., C. Xu, T. Plappert, B. Desjardins, J. H. Gorman, 3rd, J. E. Bavaria, R. C. Gorman, K. B. Chandran, and B. M. Jackson. Increased ascending aortic wall stress in patients with bicuspid aortic valves. Ann Thorac Surg 92:1384–1389, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Oishi, Y., Y. Mizuguchi, H. Miyoshi, A. Iuchi, N. Nagase, and T. Oki. A novel approach to assess aortic stiffness related to changes in aging using a two-dimensional strain imaging. Echocardiography 25:941–945, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    O’Rourke, M. F., J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante. Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens 15:426–444, 2002.CrossRefPubMedGoogle Scholar
  19. 19.
    Pape, L. A., T. T. Tsai, E. M. Isselbacher, J. K. Oh, P. T. O’Gara, A. Evangelista, R. Fattori, G. Meinhardt, S. Trimarchi, E. Bossone, T. Suzuki, J. V. Cooper, J. B. Froehlich, C. A. Nienaber, and K. A. Eagle. Aortic diameter ≥5.5 cm is not a good predictor of type A aortic dissection—observations from the international registry of acute aortic dissection (IRAD). Circulation 116:1120–1127, 2007.CrossRefPubMedGoogle Scholar
  20. 20.
    Pasta, S., G. Gentile, G. M. Raffa, D. Bellavia, G. Chiarello, R. Liotta, A. Luca, C. Scardulla, and M. Pilato. In Silico shear and intramural stresses are linked to aortic valve morphology in dilated ascending aorta. Eur J Vasc Endovasc Surg 54:254–263, 2017.CrossRefPubMedGoogle Scholar
  21. 21.
    Schaefer, B. M., M. B. Lewin, K. K. Stout, E. Gill, A. Prueitt, P. H. Byers, and C. M. Otto. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart 94:1634–1638, 2008.CrossRefPubMedGoogle Scholar
  22. 22.
    Teixeira, R., N. Moreira, R. Baptista, A. Barbosa, R. Martins, G. Castro, and L. Providencia. Circumferential ascending aortic strain and aortic stenosis. Eur Heart J Cardiovasc Imaging 14:631–641, 2013.CrossRefPubMedGoogle Scholar
  23. 23.
    Trabelsi, O., A. Duprey, J. P. Favre, and S. Avril. Predictive models with patient specific material properties for the biomechanical behavior of ascending thoracic aneurysms. Ann Biomed Eng 44:84–98, 2016.CrossRefPubMedGoogle Scholar
  24. 24.
    Verma, S., and S. C. Siu. Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med 370:1920–1929, 2014.CrossRefPubMedGoogle Scholar
  25. 25.
    Wittek, A., K. Karatolios, C. P. Fritzen, J. Bereiter-Hahn, B. Schieffer, R. Moosdorf, S. Vogt, and C. Blase. Cyclic three-dimensional wall motion of the human ascending and abdominal aorta characterized by time-resolved three-dimensional ultrasound speckle tracking. Biomech Model Mechanobiol 15:1375–1388, 2016.CrossRefPubMedGoogle Scholar
  26. 26.
    Youssefi, P., A. Gomez, T. He, L. Anderson, N. Bunce, R. Sharma, C. A. Figueroa, and M. Jahangiri. Patient-specific computational fluid dynamics-assessment of aortic hemodynamics in a spectrum of aortic valve pathologies. J Thorac Cardiovasc Surg 153:8–20, 2017.CrossRefPubMedGoogle Scholar
  27. 27.
    Yuda, S., R. Kaneko, A. Muranaka, A. Hashimoto, K. Tsuchihashi, T. Miura, N. Watanabe, and K. Shimamoto. Quantitative measurement of circumferential carotid arterial strain by two-dimensional speckle tracking imaging in healthy subjects. Echocardiography 28:899–906, 2011.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  1. 1.Fondazione Ri.MEDPalermoItaly
  2. 2.Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic TransplantationIRCCS-ISMETTPalermoItaly
  3. 3.Department of Diagnostic and Therapeutic ServicesIRCCS-ISMETTPalermoItaly

Personalised recommendations