Advertisement

Annals of Biomedical Engineering

, Volume 45, Issue 11, pp 2563–2573 | Cite as

Label-Free Sensing and Classification of Old Stored Blood

  • Jun Hong Park
  • Taesik Go
  • Sang Joon LeeEmail author
Article

Abstract

Transfusion is crucial in surgical operation and anemia treatment. However, several hemorheological properties of blood are adversely altered during blood storage. After transfusion, these adverse alterations are related with decrease of oxygen and ion transport in blood circulation, which increase the mortality of transfused patients. Therefore, accurate sensing of whether a blood supply is still viable for transfusion or not is extremely important. In this study, a H-shaped microfluidic device and digital in-line holographic microscopy were employed to measure temporal variations of blood viscosity and the optical focusing property of erythrocytes during blood storage. Stored rat blood samples separately preserved in citrate phosphate dextrose adenine-1 (CPDA-1) and ethylenediaminetetraacetic acid (EDTA) underwent considerable changes in their biophysical parameters after 2 weeks. Compared with EDTA, CPDA-1 preserves the hemorheological properties of stored blood more effectively. We propose new criteria for depository period of stored blood and indexes, such as viscosity and focal length of erythrocytes, to determine its appropriateness for transfusion. These criteria and indexes can be effectively used for high-throughput prescreening to reduce the risk of transfusion of aged blood or diagnose hematological diseases.

Keywords

Transfusion Blood screening Microfluidics Holographic microscopy Viscosity Light scattering pattern 

Notes

Acknowledgments

The authors thank to H.W. Park of POSTECH for advice on setting up the procedures for rat blood storage and treatments.

Conflict of interest

The authors declare that they have no competing interests and all authors participated sufficiently in the work.

Supplementary material

10439_2017_1902_MOESM1_ESM.pdf (837 kb)
Supplementary Materials (PDF 837 kb)

Supplementary Video (MP4 6102 kb)

Supplementary video S1: The measurement procedure of viscosity using the microfluidic device. The amount of blood sample that diverged through the junction channel was decreased with the increase of flow rate of the reference fluid. When both of the fluids reached the hydrostatic force balance, flow reversal of the test fluid in the junction channel occurred. Then, the viscosity of the blood was derived by using the simplified flow ratio equation

References

  1. 1.
    Banfi, G., G. L. Salvagno, and G. Lippi. The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin. Chem. Lab. Med. 45:565–576, 2007.CrossRefPubMedGoogle Scholar
  2. 2.
    Baskurt, O. K., and H. J. Meiselman. Blood rheology and hemodynamics. Semin. Thromb. Hemost. 29:435–450, 2003.CrossRefPubMedGoogle Scholar
  3. 3.
    Bennett-Guerrero, E., T. H. Veldman, A. Doctor, M. J. Telen, T. L. Ortel, T. S. Reid, M. A. Mulherin, H. Zhu, R. D. Buck, and R. M. Califf. Evolution of adverse changes in stored RBCs. Proc. Natl. Acad. Sci. USA 104:17063–17068, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Berezina, T. L., S. B. Zaets, C. Morgan, C. R. Spillert, M. Kamiyama, Z. Spolarics, E. A. Deitch, and G. W. Machiedo. Influence of storage on red blood cell rheological properties. J. Surg. Res. 102:6–12, 2002.CrossRefPubMedGoogle Scholar
  5. 5.
    Bunn, H. F. Evolution of mammalian hemoglobin function. Blood 58:189–197, 1981.PubMedGoogle Scholar
  6. 6.
    Byeon, H., T. Go, and S. J. Lee. Precise measurement of orientations of transparent ellipsoidal particles through digital holographic microscopy. Opt. Express 24:598–610, 2016.CrossRefPubMedGoogle Scholar
  7. 7.
    Carreau, P. J. Rheology of Polymeric Systems: Principles and Applications. Munich: Haser Publishers, 1997.Google Scholar
  8. 8.
    d’Almeida, M., J. Jagger, M. Duggan, M. White, C. Ellis, and I. Chin-Yee. A comparison of biochemical and functional alterations of rat and human erythrocytes stored in CPDA-1 for 29 days: implications for animal models of transfusion. Transfus. Med. 10:291–303, 2000.CrossRefPubMedGoogle Scholar
  9. 9.
    Daly, A., J. S. Raval, J. H. Waters, M. H. Yazer, and M. V. Kameneva. Effect of blood bank storage on the rheological properties of male and female donor red blood cells. Clin. Hemorheol. Microcirc. 56:337–345, 2014.PubMedGoogle Scholar
  10. 10.
    Dumaswala, U. J., L. Zhuo, D. W. Jacobsen, S. K. Jain, and K. A. Sukalski. Protein and lipid oxidation of banked human erythrocytes: role of glutathione. Free Radical Biol. Med. 27:1041–1049, 1999.CrossRefGoogle Scholar
  11. 11.
    Dumont, L. J., and J. P. AuBuchon. Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials. Transfusion 48:1053–1060, 2008.CrossRefPubMedGoogle Scholar
  12. 12.
    Esteban-Manzanares, G., B. González-Bermúdez, J. Cruces, M. De la Fuente, Q. Li, G. V. Guinea, J. Pérez-Rigueiro, M. Elices, and G. R. Plaza. Improved measurement of elastic properties of cells by micropipette aspiration and its application to lymphocytes. Ann. Biomed. Eng. 45:1375–1385, 2017.CrossRefPubMedGoogle Scholar
  13. 13.
    Go, T., H. Byeon, and S. J. Lee. Focusing and alignment of erythrocytes in a viscoelastic medium. Sci. Rep. 7:41162, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Grimshaw, K., J. Sahler, S. L. Spinelli, R. P. Phipps, and N. Blumberg. New frontiers in transfusion biology: identification and significance of mediators of morbidity and mortality in stored red blood cells. Transfusion 51:874–880, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hess, J. R. Red cell changes during storage. Transfus. Apher. Sci. 43:51–59, 2010.CrossRefPubMedGoogle Scholar
  16. 16.
    Hod, E. A., N. Zhang, S. A. Sokol, B. S. Wojczyk, R. O. Francis, D. Ansaldi, K. P. Francis, P. Della-Latta, S. Whittier, and S. Sheth. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood 115:4284–4292, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Holmberg, J., M. Sullivan, and B. Whitaker. Changes in United States (US) blood component costs as reported in the 2005 nationwide blood collection and utilization survey. Transfusion 46:188A–189A, 2006.Google Scholar
  18. 18.
    Hovav, T., S. Yedgar, N. Manny, and G. Barshtein. Alteration of red cell aggregability and shape during blood storage. Transfusion 39:277–281, 1999.CrossRefPubMedGoogle Scholar
  19. 19.
    Kang, Y. J., J. Ryu, and S. J. Lee. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel. Biomicrofluidics 7:44106, 2013.CrossRefGoogle Scholar
  20. 20.
    Katz, J., and J. Sheng. Applications of holography in fluid mechanics and particle dynamics. Annu. Rev. Fluid Mech. 42:531–555, 2010.CrossRefGoogle Scholar
  21. 21.
    Kriebardis, A. G., M. H. Antonelou, K. E. Stamoulis, E. Economou-Petersen, L. H. Margaritis, and I. S. Papassideri. Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells. J. Cell. Mol. Med. 11:148–155, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    LeVeen, H. H., M. Ip, N. Ahmed, T. Mascardo, R. B. Guinto, G. Falk, and N. D’Ovidio. Lowering blood viscosity to overcome vascular resistance. Surg. Gynecol. Obstet. 150:139, 1980.PubMedGoogle Scholar
  23. 23.
    Li, G., H. He, H. Yan, Q. Zhao, and D. Yin. Does carbonyl stress cause increased blood viscosity during storage? Clin. Hemorheol. Microcirc. 44:145–154, 2010.PubMedGoogle Scholar
  24. 24.
    Lowe, G. D. O., F. G. R. Fowkes, J. Dawes, P. T. Donnan, S. E. Lennie, and E. Housley. Blood viscosity, fibrinogen, and activation of coagulation and leukocytes in peripheral arterial disease and the normal population in the Edinburgh Artery Study. Circulation 87:1915–1920, 1993.CrossRefPubMedGoogle Scholar
  25. 25.
    Memmolo, P., F. Merola, L. Miccio, M. Mugnano, and P. Ferraro. Investigation on dynamics of red blood cells through their behavior as biophotonic lenses. J. Biomed. Opt. 21:121509, 2016.CrossRefPubMedGoogle Scholar
  26. 26.
    Memmolo, P., L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro. Recent advances in holographic 3D particle tracking. Adv. Opt. Photonics 7:713–755, 2015.CrossRefGoogle Scholar
  27. 27.
    Miccio, L., P. Memmolo, F. Merola, P. Netti, and P. Ferraro. Red blood cell as an adaptive optofluidic microlens. Nat. Commun. 6:6502, 2015.CrossRefPubMedGoogle Scholar
  28. 28.
    Moore, G., C. Peck, P. Sohmer, and T. Zuck. Some properties of blood stored in anticoagulant CPDA-1 solution. A brief summary. Transfusion 21:135–137, 1981.CrossRefPubMedGoogle Scholar
  29. 29.
    Park, Y., C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu. Measurement of red blood cell mechanics during morphological changes. Proc. Natl. Acad. Sci. USA 107:6731–6736, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Park, H., S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park. Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging. Sci. Rep. 6:34257, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Quinn, D. J., I. Pivkin, S. Y. Wong, K. H. Chiam, M. Dao, G. E. Karniadakis, and S. Suresh. Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems. Ann. Biomed. Eng. 39:1041–1050, 2011.CrossRefPubMedGoogle Scholar
  32. 32.
    Rebel, A., C. Lenz, H. Krieter, K. F. Waschke, K. Van Ackern, and W. Kuschinsky. Oxygen delivery at high blood viscosity and decreased arterial oxygen content to brains of conscious rats. Am. J. Physiol. Heart Circ. Physiol. 280:H2591–H2597, 2001.PubMedGoogle Scholar
  33. 33.
    Yeom, E., H. Byeon, and S. J. Lee. Effect of diabetic duration on hemorheological properties and platelet aggregation in streptozotocin-induced diabetic rats. Sci. Rep. 6:21913, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yi, F., I. Moon, and Y. H. Lee. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy. J. Biomed. Opt. 20:016005, 2015.CrossRefPubMedGoogle Scholar
  35. 35.
    Yu, L., and M. K. Kim. Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method. Opt. Lett. 30:2092–2094, 2005.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations