Annals of Biomedical Engineering

, Volume 45, Issue 11, pp 2548–2562 | Cite as

Proteomic Alterations Associated with Biomechanical Dysfunction are Early Processes in the Emilin1 Deficient Mouse Model of Aortic Valve Disease

  • P. M. Angel
  • D. A. Narmoneva
  • M. K. Sewell-Loftin
  • C. Munjal
  • L. Dupuis
  • B. J. Landis
  • A. Jegga
  • C. B. Kern
  • W. D. Merryman
  • H. S. Baldwin
  • G. M. Bressan
  • Robert B. Hinton
Article

Abstract

Aortic valve (AV) disease involves stiffening of the AV cusp with progression characterized by inflammation, fibrosis, and calcification. Here, we examine the relationship between biomechanical valve function and proteomic changes before and after the development of AV pathology in the Emilin1−/− mouse model of latent AV disease. Biomechanical studies were performed to quantify tissue stiffness at the macro (micropipette) and micro (atomic force microscopy (AFM)) levels. Micropipette studies showed that the Emilin1−/− AV annulus and cusp regions demonstrated increased stiffness only after the onset of AV disease. AFM studies showed that the Emilin1−/− cusp stiffens before the onset of AV disease and worsens with the onset of disease. Proteomes from AV cusps were investigated to identify protein functions, pathways, and interaction network alterations that occur with age- and genotype-related valve stiffening. Protein alterations due to Emilin1 deficiency, including changes in pathways and functions, preceded biomechanical aberrations, resulting in marked depletion of extracellular matrix (ECM) proteins interacting with TGFB1, including latent transforming growth factor beta 3 (LTBP3), fibulin 5 (FBLN5), and cartilage intermediate layer protein 1 (CILP1). This study identifies proteomic dysregulation is associated with biomechanical dysfunction as early pathogenic processes in the Emilin1−/− model of AV disease.

Keywords

Valves Proteomics Biomechanics Aging TGFbeta1 Extracellular matrix Protein interaction networks 

Abbreviations

AFM

Atomic force microscopy

AV

Aortic valve

ECM

Extracellular matrix

TGFB1

Transforming growth factor beta 1

VIC

Valve interstitial cell

WT

Wild type

Notes

Acknowledgments

We thank Aaron Reed for help in microscopy work and Susana Comte-Walters for help in proteomics data analysis. This study was supported by the National Center for Advancing Translational Sciences of the NIH (P.M.A., UL1 TR000445), National Institute of General Medical Sciences (P.M.A., P20 GM103542-06) the National Heart Lung and Blood Institute of the NIH (R.B.H., HL117851) an Institutional Clinical and Translational Science Award (R.B.H., NIH/NCRR 8UL1TR000077), and the Cincinnati Children’s Research Foundation (R.B.H.).

Disclosures

None.

Supplementary material

10439_2017_1899_MOESM1_ESM.pdf (3 mb)
Supplementary material 1 (PDF 3055 kb)

References

  1. 1.
    Aikawa, E., et al. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation 113(10):1344–1352, 2006.CrossRefPubMedGoogle Scholar
  2. 2.
    Akhtar, S., K. M. Meek, and V. James. Immunolocalization of elastin, collagen type i and type iii, fibronectin, and vitronectin in extracellular matrix components of normal and myxomatous mitral heart valve chordae tendineae. Cardiovasc. Pathol. 8(4):203–211, 1999.CrossRefPubMedGoogle Scholar
  3. 3.
    Alvarez-Llamas, G., et al. Modification of the secretion pattern of proteases, inflammatory mediators, and extracellular matrix proteins by human aortic valve is key in severe aortic stenosis. Mol. Cell. Proteomics 12(9):2426–2439, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Angel, P. M., et al. Networked-based characterization of extracellular matrix proteins from adult mouse pulmonary and aortic valves. J. Proteome Res. 10(2):812–823, 2011.CrossRefPubMedGoogle Scholar
  5. 5.
    Aronow, W. S. Valvular aortic stenosis in the elderly. Cardiol. Rev. 15(5):217–225, 2007.CrossRefPubMedGoogle Scholar
  6. 6.
    Balasubramanian, S., et al. mTOR in growth and protection of hypertrophying myocardium. Cardiovasc. Hematol. Agents Med. Chem. 7(1):52–63, 2009.CrossRefPubMedGoogle Scholar
  7. 7.
    Barrick, C. J., et al. Reduced egfr causes abnormal valvular differentiation leading to calcific aortic stenosis and left ventricular hypertrophy in c57bl/6j but not 129s1/svimj mice. Am. J. Physiol. Heart Circ. Physiol. 297(1):H65–H75, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Benjamini, Y., and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57(1):289–300, 1995.Google Scholar
  9. 9.
    Chu, Y., et al. Pioglitazone attenuates valvular calcification induced by hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 33(3):523–532, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dabovic, B., et al. Bone abnormalities in latent tgf-β binding protein (ltbp)-3–null mice indicate a role for ltbp-3 in modulating tgf-β bioavailability. J. Cell Biol. 156(2):227–232, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Duncan, D., N. Prodduturi, and B. Zhang. Webgestalt2: an updated and expanded version of the web-based gene set analysis toolkit. BMC Bioinform. 11(Suppl 4):P10, 2010.CrossRefGoogle Scholar
  12. 12.
    Guilak, F., L. G. Alexopoulos, M. A. Haider, H. P. Ting-Beall, and L. A. Setton. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization. Ann. Biomed. Eng. 33(10):1312–1318, 2005.CrossRefPubMedGoogle Scholar
  13. 13.
    Harikrishnan, K., et al. Fibulin-1 suppresses endothelial to mesenchymal transition in the proximal outflow tract. Mech. Dev. 136:123–132, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hinton, Jr, R. B., et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ. Res. 98(11):1431–1438, 2006.CrossRefPubMedGoogle Scholar
  15. 15.
    Hwang, S.-K., and H.-H. Kim. The functions of mtor in ischemic diseases. BMB Rep. 44(8):506–511, 2011.CrossRefPubMedGoogle Scholar
  16. 16.
    Iwamoto, R., and E. Mekada. Erbb and hb-egf signaling in heart development and function. Cell Struct. Funct. 31(1):1–14, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Jiang, X., et al. Modularity in the genetic disease-phenotype network. FEBS Lett. 582(17):2549–2554, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    Johnson, K., D. Farley, S. I. Hu, and R. Terkeltaub. One of two chondrocyte-expressed isoforms of cartilage intermediate-layer protein functions as an insulin-like growth factor 1 antagonist. Arthritis Rheum. 48(5):1302–1314, 2003.CrossRefPubMedGoogle Scholar
  19. 19.
    Jones, W. R., et al. Alterations in the young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32(2):119–127, 1999.CrossRefPubMedGoogle Scholar
  20. 20.
    Koli, K., M. J. Ryynänen, and J. Keski-Oja. Latent tgf-β binding proteins (ltbps)-1 and-3 coordinate proliferation and osteogenic differentiation of human mesenchymal stem cells. Bone 43(4):679–688, 2008.CrossRefPubMedGoogle Scholar
  21. 21.
    Krishnamurthy, V. K., F. Guilak, D. A. Narmoneva, and R. B. Hinton. Regional structure-function relationships in mouse aortic valve tissue. J. Biomech. 44(1):77–83, 2011.CrossRefPubMedGoogle Scholar
  22. 22.
    Krishnamurthy, V. K., et al. Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease. Matrix Biol. 31(3):197–205, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li, F., et al. Pioglitazone attenuates progression of aortic valve calcification via down-regulating receptor for advanced glycation end products. Basic Res. Cardiol. 107(6):1–14, 2012.CrossRefGoogle Scholar
  24. 24.
    Liu, H., R. G. Sadygov, and J. R. Yates. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76(14):4193–4201, 2004.CrossRefPubMedGoogle Scholar
  25. 25.
    Loeys, B., et al. Homozygosity for a missense mutation in fibulin-5 (fbln5) results in a severe form of cutis laxa. Hum. Mol. Genet. 11(18):2113–2118, 2002.CrossRefPubMedGoogle Scholar
  26. 26.
    Makki, N., K. W. Thiel, and F. J. Miller. The epidermal growth factor receptor and its ligands in cardiovascular disease. Int. J. Mol. Sci. 14(10):20597–20613, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Martín-Rojas, T., et al. Proteomic profile of human aortic stenosis: insights into the degenerative process. J. Proteome Res. 11(3):1537–1550, 2012.CrossRefPubMedGoogle Scholar
  28. 28.
    Merryman, W. D., and F. J. Schoen. Mechanisms of calcification in aortic valve disease: role of mechanokinetics and mechanodynamics. Curr. Cardiol. Rep. 15(5):1–7, 2013.CrossRefGoogle Scholar
  29. 29.
    Miller, J. D., R. M. Weiss, and D. D. Heistad. Calcific aortic valve stenosis: methods, models, and mechanisms. Circ. Res. 108(11):1392–1412, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Moremen, K. W., M. Tiemeyer, and A. V. Nairn. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13(7):448–462, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Munjal, C., et al. Tgf-β mediates early angiogenesis and latent fibrosis in an emilin1-deficient mouse model of aortic valve disease. Dis. Models Mech. 7(8):987–996, 2014.CrossRefGoogle Scholar
  32. 32.
    Munjal, C., et al. Inhibition of mapk-erk pathway in vivo attenuates aortic valve disease processes in emilin1-deficient mouse model. Physiol. Rep. 5(5):e13152, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nkomo, V. T., et al. Burden of valvular heart diseases: a population-based study. Lancet 368(9540):1005–1011, 2006.CrossRefPubMedGoogle Scholar
  34. 34.
    Pezet, M., et al. Elastin haploinsufficiency induces alternative aging processes in the aorta. Rejuvenation Res. 11(1):97–112, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rajamannan, N. M., et al. Calcific aortic valve disease: not simply a degenerative process a review and agenda for research from the national heart and lung and blood institute aortic stenosis working group executive summary: calcific aortic valve disease: 2011 update. Circulation 124(16):1783–1791, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Robertson, I. B., et al. Latent tgf-β-binding proteins. Matrix Biol. 47:44–53, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Saeed, A. I., et al. Tm4 microarray software suite. Methods Enzymol. 411:134–193, 2006.CrossRefPubMedGoogle Scholar
  38. 38.
    Seki, S., et al. Cartilage intermediate layer protein promotes lumbar disc degeneration. Biochem. Biophys. Res. Commun. 446(4):876–881, 2014.CrossRefPubMedGoogle Scholar
  39. 39.
    Sewell-Loftin, M. K., C. B. Brown, H. S. Baldwin, and W. D. Merryman. A novel technique for quantifying mouse heart valve leaflet stiffness with atomic force microscopy. J. Heart Valve Dis. 21:513–520, 2012.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Sharan, R., I. Ulitsky, and R. Shamir. Network-based prediction of protein function. Mol. Syst. Biol. 3:1–13, 2007.CrossRefGoogle Scholar
  41. 41.
    Sibilia, M., et al. Mice humanised for the egf receptor display hypomorphic phenotypes in skin, bone and heart. Development 130(19):4515–4525, 2003.CrossRefPubMedGoogle Scholar
  42. 42.
    Steitz, S. A., et al. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am. J. Pathol. 161(6):2035–2046, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sullivan, K. M., R. Bissonnette, H. Yanagisawa, S. N. Hussain, and E. C. Davis. Fibulin-5 functions as an endogenous angiogenesis inhibitor. Lab. Invest. 87(8):818–827, 2007.CrossRefPubMedGoogle Scholar
  44. 44.
    Theret, D. P., M. J. Levesque, M. Sato, R. M. Nerem, and L. T. Wheeler. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J. Biomech. Eng. 110(3):190–199, 1988.CrossRefPubMedGoogle Scholar
  45. 45.
    Varki, A. Biological roles of glycans. Glycobiology 27(1):3–49, 2017.CrossRefPubMedGoogle Scholar
  46. 46.
    Vehviläinen, P., et al. Latent tgf-β binding proteins (ltbps) 1 and 3 differentially regulate transforming growth factor-β activity in malignant mesothelioma. Hum. Pathol. 42(2):269–278, 2011.CrossRefPubMedGoogle Scholar
  47. 47.
    Weichhart, T., M. Hengstschläger, and M. Linke. Regulation of innate immune cell function by mtor. Nat. Rev. Immunol. 15(10):599–614, 2015.CrossRefPubMedGoogle Scholar
  48. 48.
    Wiltz, D., et al. Extracellular matrix organization, structure, and function. In: Calcific Aortic Valve Disease, edited by E. Aikawa. Hicksville: InTech, 2013.Google Scholar
  49. 49.
    Wirrig, E. E., R. B. Hinton, and K. E. Yutzey. Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves. J. Mol. Cell. Cardiol. 50(3):561–569, 2011.CrossRefPubMedGoogle Scholar
  50. 50.
    Xu, L., and M. Brink. mTOR, cardiomyocytes and inflammation in cardiac hypertrophy. Biochim. Biophys. Acta Mol. Cell Res. 1863:1894–1903, 1863.CrossRefGoogle Scholar
  51. 51.
    Yoshioka, M., et al. Chondromodulin-i maintains cardiac valvular function by preventing angiogenesis. Nat. Med. 12(10):1151–1159, 2006.CrossRefPubMedGoogle Scholar
  52. 52.
    Zacchigna, L., et al. Emilin1 links tgfbeta maturation to blood pressure homeostasis. Cell 124(5):929–942, 2006.CrossRefPubMedGoogle Scholar
  53. 53.
    Zanetti, M., et al. Emilin-1 deficiency induces elastogenesis and vascular cell defects. Mol. Cell. Biol. 24(2):638–650, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhang, B., S. Kirov, and J. Snoddy. Webgestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33(Web Server Issue):W741, 2005.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • P. M. Angel
    • 1
  • D. A. Narmoneva
    • 2
  • M. K. Sewell-Loftin
    • 3
  • C. Munjal
    • 4
  • L. Dupuis
    • 5
  • B. J. Landis
    • 6
  • A. Jegga
    • 7
  • C. B. Kern
    • 5
  • W. D. Merryman
    • 3
  • H. S. Baldwin
    • 8
  • G. M. Bressan
    • 9
  • Robert B. Hinton
    • 4
  1. 1.Department of Cell and Molecular Pharmacology & Experimental TherapeuticsMedical University of South CarolinaCharlestonUSA
  2. 2.Division of Biomedical EngineeringUniversity of CincinnatiCincinnatiUSA
  3. 3.Division of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  4. 4.Division of CardiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  5. 5.Department of Regenerative MedicineMedical University of South CarolinaCharlestonUSA
  6. 6.Division of Pediatric CardiologyIndiana UniversityIndianapolisUSA
  7. 7.Division of Biomedical InformaticsVanderbilt UniversityNashvilleUSA
  8. 8.Division of Pediatric CardiologyVanderbilt UniversityNashvilleUSA
  9. 9.Department of Molecular MedicineUniversity of PaduaPaduaItaly

Personalised recommendations