Advertisement

Annals of Biomedical Engineering

, Volume 45, Issue 10, pp 2335–2347 | Cite as

Peristaltic-Like Motion of the Human Fetal Right Ventricle and its Effects on Fluid Dynamics and Energy Dynamics

  • Hadi Wiputra
  • Guat Ling Lim
  • Khong Chun Chua
  • R. Nivetha
  • Sanah Merchant Soomar
  • Arijit Biwas
  • Citra Nurfarah Zaini Mattar
  • Hwa Liang Leo
  • Choon Hwai YapEmail author
Article

Abstract

In both adult human and canine, the cardiac right ventricle (RV) is known to exhibit a peristaltic-like motion, where RV sinus (inflow region) contracts first and the infundibulum (outflow region) later, in a wave-like contraction motion. The delay in contraction between the sinus and infundibulum averaged at 15% of the cardiac cycle and was estimated to produce an intra-ventricular pressure difference of 15 mmHg. However, whether such a contractile motion occurs in human fetuses as well, its effects on hemodynamics remains unknown, and are the subject of the current study. Hemodynamic studies of fetal hearts are important as previous works showed that healthy cardiac development is sensitive to fluid mechanical forces. We performed 4D clinical ultrasound imaging on eight 20-weeks old human fetuses. In five fetal RVs, peristaltic-like contractile motion from the sinus to infundibulum (“forward peristaltic-like motion”) was observed, but in one RV, peristaltic-like motion was observed from the infundibulum to sinus (“reversed peristaltic-like motion”), and two RVs contraction delay could not be determined due to poor regression fit. Next, we performed dynamic-mesh computational fluid dynamics simulations with varying extents of peristaltic-like motions for three of the eight RVs. Results showed that the peristaltic-like motion did not affect flow patterns significantly, but had significant influence on energy dynamics: increasing extent of forward peristaltic-like motion reduced the energy required for movement of fluid out of the heart during systolic ejection, while increasing extent of reversed peristaltic-like motion increased the required energy. It is currently unclear whether the peristaltic-like motion is an adaptation to reduce physiological energy expenditure, or merely an artefact of the cardiac developmental process.

Keywords

Human fetus Right ventricle Peristaltic motion Fluid mechanics Ventricular vortex Wall shear stress 

Notes

Acknowledgements

The authors thank the National University of Singapore Young Investigator Award, grant entitled “Fluid Mechanics and Mechanobiology of Congenital Cardiac Outflow Tract Malformations” (PI: Yap) for funding, and the National University of Singapore Graduate School of Integrated Sciences and Engineering Scholarship for funding support for the lead author, Hadi Wiputra.

Supplementary material

Supplementary material 1 (AVI 6896 kb)

10439_2017_1886_MOESM2_ESM.avi (1.4 mb)
Supplementary material 2 (AVI 1449 kb)
10439_2017_1886_MOESM3_ESM.avi (1.3 mb)
Supplementary material 3 (AVI 1310 kb)
10439_2017_1886_MOESM4_ESM.avi (1.5 mb)
Supplementary material 4 (AVI 1495 kb)
10439_2017_1886_MOESM5_ESM.avi (13.6 mb)
Supplementary material 5 (AVI 13936 kb)
10439_2017_1886_MOESM6_ESM.avi (21.1 mb)
Supplementary material 6 (AVI 21579 kb)
10439_2017_1886_MOESM7_ESM.avi (12.8 mb)
Supplementary material 7 (AVI 13061 kb)
10439_2017_1886_MOESM8_ESM.avi (22.4 mb)
Supplementary material 8 (AVI 22950 kb)
10439_2017_1886_MOESM9_ESM.avi (12.5 mb)
Supplementary material 9 (AVI 12827 kb)
10439_2017_1886_MOESM10_ESM.avi (18.3 mb)
Supplementary material 10 (AVI 18790 kb)

References

  1. 1.
    Allan, L., S. K. Chita, W. Al-Ghazali, D. Crawford, and M. Tynan. Doppler echocardiographic evaluation of the normal human fetal heart. Br. Heart J. 57:528–533, 1987.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Armour, J., J. Pace, and W. Randall. Interrelationship of architecture and function of the right ventricle. Am. J. Physiol.-Leg. Content 218:174–179, 2016.Google Scholar
  3. 3.
    Geva, T., A. J. Powell, E. C. Crawford, T. Chung, and S. D. Colan. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circulation 98:339–345, 1998.CrossRefPubMedGoogle Scholar
  4. 4.
    Harada, K., M. J. Rice, T. Shiota, M. Ishii, R. W. McDonald, M. D. Reller, and D. J. Sahn. Gestational age-and growth-related alterations in fetal right and left ventricular diastolic filling patterns. Am. J. Cardiol. 79:173–177, 1997.CrossRefPubMedGoogle Scholar
  5. 5.
    Hove, J. R., R. W. Koster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177, 2003.CrossRefPubMedGoogle Scholar
  6. 6.
    Kenny, J. F., T. Plappert, P. Doubilet, D. H. Saltzman, M. Cartier, L. Zollars, G. Leatherman, and M. S. J. Sutton. Changes in intracardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: a prospective Doppler echocardiographic study. Circulation 74:1208–1216, 1986.CrossRefPubMedGoogle Scholar
  7. 7.
    Lai, C. Q., G. L. Lim, M. Jamil, C. N. Z. Mattar, A. Biswas, and C. H. Yap. Fluid mechanics of blood flow in human fetal left ventricles based on patient-specific 4D ultrasound scans. Biomech. Modeling Mechanobiol. 15:1159–1172, 2016.CrossRefGoogle Scholar
  8. 8.
    Li, Y., J. Sun, C. K. Tang, and I. Y. Shum. Lazy snapping. Acm Trans. Graph. 23:303–308, 2004.CrossRefGoogle Scholar
  9. 9.
    Molina, F., C. Faro, A. Sotiriadis, T. Dagklis, and K. Nicolaides. Heart stroke volume and cardiac output by four-dimensional ultrasound in normal fetuses. Ultrasound Obstet. Gynecol. 32:181–187, 2008.CrossRefPubMedGoogle Scholar
  10. 10.
    Moorman, A. F., F. De Jong, M. M. Denyn, and W. H. Lamers. Development of the cardiac conduction system. Circu. Res. 82:629–644, 1998.CrossRefGoogle Scholar
  11. 11.
    Moss, A. J., and F. H. Adams. Heart Disease in Infants, Children, and Adolescents. Baltimore: Williams & Wilkins Company, 1968.Google Scholar
  12. 12.
    Paladini, D., M. Vassallo, G. Sglavo, C. Lapadula, and P. Martinelli. The role of spatio-temporal image correlation (STIC) with tomographic ultrasound imaging (TUI) in the sequential analysis of fetal congenital heart disease. Ultrasound Obstet. Gynecol. 27:555–561, 2006.CrossRefPubMedGoogle Scholar
  13. 13.
    Raines, R., M. LeWinter, and J. Covell. Regional shortening patterns in canine right ventricle. Am. J. Physiol.-Leg. Content 231:1395–1400, 1976.Google Scholar
  14. 14.
    Ramanathan, C., P. Jia, R. Ghanem, K. Ryu, and Y. Rudy. Activation and repolarization of the normal human heart under complete physiological conditions. Proc. Natl. Acad. Sci. 103:6309–6314, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Steinman D. and L. Antiga. VMTK-Vascular Modeling Toolkit. Webpage, 2008.Google Scholar
  16. 16.
    Tobita, K., and B. B. Keller. Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. Am. J. Physiol. Heart Circ. Physiol. 279:H959–H969, 2000.PubMedGoogle Scholar
  17. 17.
    Tworetzky, W., L. Wilkins-Haug, R. W. Jennings, M. E. van der Velde, A. C. Marshall, G. R. Marx, S. D. Colan, C. B. Benson, J. E. Lock, and S. B. Perry. Balloon dilation of severe aortic stenosis in the fetus potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation 110:2125–2131, 2004.CrossRefPubMedGoogle Scholar
  18. 18.
    Wiputra, H., C. Q. Lai, G. L. Lim, J. J. W. Heng, L. Guo, S. M. Soomar, H. L. Leo, A. Biwas, C. N. Z. Mattar, and C. H. Yap. Fluid mechanics of human fetal right ventricles from image-based computational fluid dynamics using 4D clinical ultrasound scans. Am. J. Physiol.-Heart Circ. Physiol. 311:H1498–H1508, 2016.CrossRefPubMedGoogle Scholar
  19. 19.
    Wiputra, H., G. L. Lim, D. A. K. Chia, C. N. Z. Mattar, A. Biswas, and C. H. Yap. Methods for fluid dynamics simulations of human fetal cardiac chambers based on patient-specific 4D ultrasound scans. J. Biomech. Sci. Eng. 11:15, 2016.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Hadi Wiputra
    • 1
  • Guat Ling Lim
    • 2
  • Khong Chun Chua
    • 1
  • R. Nivetha
    • 1
  • Sanah Merchant Soomar
    • 3
  • Arijit Biwas
    • 2
  • Citra Nurfarah Zaini Mattar
    • 2
  • Hwa Liang Leo
    • 1
  • Choon Hwai Yap
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Obstetrics and Gynecology, Yong Loo Lin School of MedicineNational University of Singapore, National University Health SystemsSingaporeSingapore
  3. 3.Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore, National University Health SystemsSingaporeSingapore

Personalised recommendations