Advertisement

Annals of Biomedical Engineering

, Volume 45, Issue 10, pp 2348–2359 | Cite as

Electrospun PLGA Nanofiber Scaffolds Release Ibuprofen Faster and Degrade Slower After In Vivo Implantation

  • Corinne N. Riggin
  • Feini Qu
  • Dong Hwa Kim
  • Julianne Huegel
  • David R. Steinberg
  • Andrew F. Kuntz
  • Louis J. Soslowsky
  • Robert L. Mauck
  • Joseph BernsteinEmail author
Article

Abstract

While delayed delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has been associated with improved tendon healing, early delivery has been associated with impaired healing. Therefore, NSAID use is appropriate only if the dose, timing, and mode of delivery relieves pain but does not impede tissue repair. Because delivery parameters can be controlled using drug-eluting nanofibrous scaffolds, our objective was to develop a scaffold for local controlled release of ibuprofen (IBP), and characterize the release profile and degradation both in vitro and in vivo. We found that when incubated in vitro in saline, scaffolds containing IBP had a linear release profile. However, when implanted subcutaneously in vivo or when incubated in vitro in serum, scaffolds showed a rapid burst release. These data demonstrate that scaffold properties are dependent on the environment in which they are placed and the importance of using serum, rather than saline, for initial in vitro evaluation of biofactor release from biodegradable scaffolds.

Keywords

NSAID Tendon healing Polymer scaffold 

Notes

Acknowledgments

This work was supported by a Merit Grant from the Department of Veterans’ Affairs [O0979-R]; the National Institutes of Health [T32 AR007132, P30 AR050950]; and a National Science Foundation Graduate Research Fellowship.

Conflict of interest

The authors have no relevant disclosures related to this study.

References

  1. 1.
    Al Malyan, M., C. Becchi, L. Nikkola, P. Viitanen, S. Boncinelli, F. Chiellini, and N. Ashammakhi. Polymer-based biodegradable drug delivery systems in pain management. J. Craniofac. Surg. 17:302–313, 2006.CrossRefPubMedGoogle Scholar
  2. 2.
    Almekinders, L. C., A. J. Baynes, and L. W. Bracey. An in vitro investigation into the effects of repetitive motion and nonsteroidal antiinflammatory medication on human tendon fibroblasts. Am. J. Sports Med. 23:119–123, 1995.CrossRefPubMedGoogle Scholar
  3. 3.
    Altman, R. D., L. L. Latta, R. Keer, K. Renfree, F. J. Hornicek, and K. Banovac. Effect of nonsteroidal antiinflammatory drugs on fracture healing: a laboratory study in rats. J. Orthop. Trauma 9:392–400, 1995.CrossRefPubMedGoogle Scholar
  4. 4.
    Beason, D. P., B. K. Connizzo, L. M. Dourte, R. L. Mauck, L. J. Soslowsky, D. R. Steinberg, and J. Bernstein. Fiber-aligned polymer scaffolds for rotator cuff repair in a rat model. J. Shoulder Elb. Surg. 21:245–250, 2012.CrossRefGoogle Scholar
  5. 5.
    Bo, J., E. Sudmann, and P. F. Marton. Effect of indomethacin on fracture healing in rats. Acta Orthop. Scand. 47:588–599, 1976.CrossRefPubMedGoogle Scholar
  6. 6.
    Bonelli, P., F. M. Tuccillo, A. Federico, M. Napolitano, A. Borrelli, D. Melisi, M. G. Rimoli, R. Palaia, C. Arra, and F. Carinci. Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations. Int. J. Nanomed. 7:5683–5691, 2012.CrossRefGoogle Scholar
  7. 7.
    Canton, I., R. McKean, M. Charnley, K. A. Blackwood, C. Fiorica, A. J. Ryan, and S. MacNeil. Development of an ibuprofen-releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration. Biotechnol. Bioeng. 105:396–408, 2010.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen, D. W., J. Y. Liao, S. J. Liu, and E. C. Chan. Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: an in vitro and in vivo study. Int. J. Nanomed. 7:763–771, 2012.Google Scholar
  9. 9.
    Cohen, D. B., S. Kawamura, J. R. Ehteshami, and S. A. Rodeo. Indomethacin and celecoxib impair rotator cuff tendon-to-bone healing. Am. J. Sports Med. 34:362–369, 2006.CrossRefPubMedGoogle Scholar
  10. 10.
    Connizzo, B. K., S. M. Yannascoli, J. J. Tucker, A. C. Caro, C. N. Riggin, R. L. Mauck, L. J. Soslowsky, D. R. Steinberg, and J. Bernstein. The detrimental effects of systemic ibuprofen delivery on tendon healing are time-dependent. Clin. Orthop. Relat. Res. 472:2433–2439, 2014.CrossRefPubMedGoogle Scholar
  11. 11.
    Davies, N. M. Clinical pharmacokinetics of ibuprofen. The first 30 years. Clin. Pharmacokinet. 34:101–154, 1998.CrossRefPubMedGoogle Scholar
  12. 12.
    Derwin, K. A., L. J. Soslowsky, W. D. Green, and S. H. Elder. A new optical system for the determination of deformations and strains: calibration characteristics and experimental results. J. Biomech. 27:1277–1285, 1994.CrossRefPubMedGoogle Scholar
  13. 13.
    Dimmen, S., L. Nordsletten, L. Engebretsen, H. Steen, and J. E. Madsen. The effect of parecoxib and indometacin on tendon-to-bone healing in a bone tunnel: an experimental study in rats. J. Bone Jt Surg. Br. 91:259–263, 2009.CrossRefGoogle Scholar
  14. 14.
    Edelstein, L., S. J. Thomas, and L. J. Soslowsky. Rotator cuff tears: what have we learned from animal models? J. Musculoskelet. Neuronal Interact. 11:150–162, 2011.PubMedGoogle Scholar
  15. 15.
    Engesaeter, L. B., B. Sudmann, and E. Sudmann. Fracture healing in rats inhibited by locally administered indomethacin. Acta Orthop. Scand. 63:330–333, 1992.CrossRefPubMedGoogle Scholar
  16. 16.
    Ennett, A. B., D. Kaigler, and D. J. Mooney. Temporally regulated delivery of VEGF in vitro and in vivo. J. Biomed. Mater. Res. A 79:176–184, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Estey, T., J. Kang, S. P. Schwendeman, and J. F. Carpenter. BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J. Pharm. Sci. 95:1626–1639, 2006.CrossRefPubMedGoogle Scholar
  18. 18.
    Favata, M. Scarless Healing in the Fetus: Implications and Strategies for Postnatal Tendon Repair. Philadelphia: University of Pennsylvania, 2006.Google Scholar
  19. 19.
    Fernandez-Carballido, A., R. Herrero-Vanrell, I. T. Molina-Martinez, and P. Pastoriza. Biodegradable ibuprofen-loaded PLGA microspheres for intraarticular administration. Effect of labrafil addition on release in vitro. Int. J. Pharm. 279:33–41, 2004.CrossRefPubMedGoogle Scholar
  20. 20.
    Ferry, S. T., L. E. Dahners, H. M. Afshari, and P. S. Weinhold. The effects of common anti-inflammatory drugs on the healing rat patellar tendon. Am. J. Sports Med. 35:1326–1333, 2007.CrossRefPubMedGoogle Scholar
  21. 21.
    Gerstenfeld, L. C., M. Al-Ghawas, Y. M. Alkhiary, D. M. Cullinane, E. A. Krall, J. L. Fitch, E. G. Webb, M. A. Thiede, and T. A. Einhorn. Selective and nonselective cyclooxygenase-2 inhibitors and experimental fracture-healing. Reversibility of effects after short-term treatment. J. Bone Jt Surg. Am. 89:114–125, 2007.Google Scholar
  22. 22.
    Giannoudis, P. V., D. A. MacDonald, S. J. Matthews, R. M. Smith, A. J. Furlong, and P. De Boer. Nonunion of the femoral diaphysis. The influence of reaming and non-steroidal anti-inflammatory drugs. J. Bone Jt Surg. Br. 82:655–658, 2000.CrossRefGoogle Scholar
  23. 23.
    Grizzi, I., H. Garreau, S. Li, and M. Vert. Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials 16:305–311, 1995.CrossRefPubMedGoogle Scholar
  24. 24.
    Hu, C., S. Liu, Y. Zhang, B. Li, H. Yang, C. Fan, and W. Cui. Long-term drug release from electrospun fibers for in vivo inflammation prevention in the prevention of peritendinous adhesions. Acta Biomater. 9:7381–7388, 2013.CrossRefPubMedGoogle Scholar
  25. 25.
    Jamshidi-Adegani, F., E. Seyedjafari, N. Gheibi, M. Soleimani, and M. Sahmani. Prevention of adhesion bands by ibuprofen-loaded PLGA nanofibers. Biotechnol. Prog. 2016. doi: 10.1002/btpr.2270.PubMedGoogle Scholar
  26. 26.
    Jiang, H., D. Fang, B. Hsiao, B. Chu, and W. Chen. Preparation and characterization of ibuprofen-loaded poly(lactide-co-glycolide)/poly(ethylene glycol)-g-chitosan electrospun membranes. J. Biomater. Sci. Polym. Ed. 15:279–296, 2004.CrossRefPubMedGoogle Scholar
  27. 27.
    Kapoor, D. N., A. Bhatia, R. Kaur, R. Sharma, G. Kaur, and S. Dhawan. PLGA: a unique polymer for drug delivery. Ther. Deliv. 6:41–58, 2015.CrossRefPubMedGoogle Scholar
  28. 28.
    Keller, J., C. Bunger, T. T. Andreassen, B. Bak, and U. Lucht. Bone repair inhibited by indomethacin. Effects on bone metabolism and strength of rabbit osteotomies. Acta Orthop. Scand. 58:379–383, 1987.CrossRefPubMedGoogle Scholar
  29. 29.
    Kesur, B. R., V. R. Salunkhe, and C. S. Magdum. Development and validation of UV spectrophotometric method for simultaneous estimation of ibuprofen and famotidine in bulk and formulated tablet dosage form. Int. J. Pharm. Pharm. Sci. 4:271–274, 2012.Google Scholar
  30. 30.
    Kulick, M. I., S. Smith, and K. Hadler. Oral ibuprofen: evaluation of its effect on peritendinous adhesions and the breaking strength of a tenorrhaphy. J. Hand Surg. Am. 11:110–120, 1986.CrossRefPubMedGoogle Scholar
  31. 31.
    Lindholm, T. S., and H. Tornkvist. Inhibitory effect on bone formation and calcification exerted by the anti-inflammatory drug ibuprofen. An experimental study on adult rat with fracture. Scand. J. Rheumatol. 10:38–42, 1981.CrossRefPubMedGoogle Scholar
  32. 32.
    Miller, K. S., L. Edelstein, B. K. Connizzo, and L. J. Soslowsky. Effect of preconditioning and stress relaxation on local collagen fiber re-alignment: inhomogeneous properties of rat supraspinatus tendon. J. Biomech. Eng. 134:031007, 2012.CrossRefPubMedGoogle Scholar
  33. 33.
    Mohiti-Asli, M., S. Saha, S. V. Murphy, H. Gracz, B. Pourdeyhimi, A. Atala, and E. G. Loboa. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. J. Biomed. Mater. Res. B 2015. doi: 10.1002/jbm.b.33520.Google Scholar
  34. 34.
    Nerurkar, N. L., B. M. Baker, C. Y. Chen, D. M. Elliott, and R. L. Mauck. Engineering of fiber-reinforced tissues with anisotropic biodegradable nanofibrous scaffolds. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:787–790, 2006.PubMedGoogle Scholar
  35. 35.
    Park, T. G. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 16:1123–1130, 1995.CrossRefPubMedGoogle Scholar
  36. 36.
    Pitarresi, G., C. Fiorica, F. S. Palumbo, F. Calascibetta, and G. Giammona. Polyaspartamide–polylactide electrospun scaffolds for potential topical release of ibuprofen. J. Biomed. Mater. Res. A 100:1565–1572, 2012.CrossRefPubMedGoogle Scholar
  37. 37.
    Riggin, C. N., J. J. Tucker, L. J. Soslowsky, and A. F. Kuntz. Intra-articular tibiofemoral injection of a nonsteroidal anti-inflammatory drug has no detrimental effects on joint mechanics in a rat model. J. Orthop. Res. 32:1512–1519, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rivera-Leyva, J. C., M. Garcia-Flores, A. Valladares-Mendez, L. M. Orozco-Castellanos, and M. Martinez-Alfaro. Comparative studies on the dissolution profiles of oral ibuprofen suspension and commercial tablets using biopharmaceutical classification system criteria. Indian J. Pharm. Sci. 74:312–318, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Siegel, S. J., J. B. Kahn, K. Metzger, K. I. Winey, K. Werner, and N. Dan. Effect of drug type on the degradation rate of PLGA matrices. Eur. J. Pharm. Biopharm. 64:287–293, 2006.CrossRefPubMedGoogle Scholar
  40. 40.
    Tsai, W. C., C. C. Hsu, C. P. Chen, M. J. Chen, M. S. Lin, and J. H. Pang. Ibuprofen inhibition of tendon cell migration and down-regulation of paxillin expression. J. Orthop. Res. 24:551–558, 2006.CrossRefPubMedGoogle Scholar
  41. 41.
    Tsai, W. C., C. C. Hsu, S. W. Chou, C. Y. Chung, J. Chen, and J. H. Pang. Effects of celecoxib on migration, proliferation and collagen expression of tendon cells. Connect. Tissue Res. 48:46–51, 2007.CrossRefPubMedGoogle Scholar
  42. 42.
    Tseng, Y. Y., Y. C. Kao, J. Y. Liao, W. A. Chen, and S. J. Liu. Biodegradable drug-eluting poly[lactic-co-glycol acid] nanofibers for the sustainable delivery of vancomycin to brain tissue: in vitro and in vivo studies. ACS Chem. Neurosci. 4:1314–1321, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Virchenko, O., B. Skoglund, and P. Aspenberg. Parecoxib impairs early tendon repair but improves later remodeling. Am. J. Sports Med. 32:1743–1747, 2004.CrossRefPubMedGoogle Scholar
  44. 44.
    Xiong, Y., Z. Yu, Y. Lang, J. Hu, H. Li, Y. Yan, C. Tu, T. Yang, Y. Song, H. Duan, and F. Pei. In vitro stress effect on degradation and drug release behaviors of basic fibroblast growth factor—poly(lactic-co-glycolic-acid) microsphere. Drug Des. Dev. Ther. 10:431–440, 2016.CrossRefGoogle Scholar
  45. 45.
    Zolnik, B. S., and D. J. Burgess. Effect of acidic pH on PLGA microsphere degradation and release. J. Control. Release 122:338–344, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society (Outside the U.S.) 2017

Authors and Affiliations

  • Corinne N. Riggin
    • 1
    • 2
    • 3
  • Feini Qu
    • 1
    • 2
    • 4
  • Dong Hwa Kim
    • 1
    • 2
  • Julianne Huegel
    • 1
    • 2
  • David R. Steinberg
    • 1
    • 2
  • Andrew F. Kuntz
    • 1
    • 2
  • Louis J. Soslowsky
    • 1
    • 2
    • 3
  • Robert L. Mauck
    • 1
    • 2
    • 3
  • Joseph Bernstein
    • 1
    • 2
    Email author
  1. 1.Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Philadelphia VA Medical CenterPhiladelphiaUSA
  2. 2.McKay Orthopaedic Research LabUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations