Advertisement

Annals of Biomedical Engineering

, Volume 45, Issue 10, pp 2281–2297 | Cite as

Influence of Cannulation Site on Carotid Perfusion During Extracorporeal Membrane Oxygenation in a Compliant Human Aortic Model

  • Andreas Geier
  • Andreas Kunert
  • Günter Albrecht
  • Andreas Liebold
  • Markus HoenickaEmail author
Article

Abstract

Blood oxygenized by veno-arterial extracorporeal membrane oxygenation (ECMO) can be returned to the aorta (central cannulation) or to peripheral arteries (axillar, femoral). Hemodynamic effects of these cannulation types were analyzed in a mock loop with an aortic model representative of normal anatomy and compliance under physiological pressures and flow rates. Pressures, flow rates, and contribution of ECMO flow to total flow as a measure of oxygen supply were monitored in the carotids. Steady or pulsatile ECMO flow, residual or no cardiac output, and intraaortic balloon pump counterpulsation were tested as independent factors. With residual heart function, central cannulation provided the best oxygenated flow and pressure to the carotid arteries (CA). Axillar cannulation preferentially perfused the right CA at the expense of the left CA. Femoral cannulation provided only lower amounts of oxygenated blood to both CA. Pulsation increased the surplus hemodynamic energy. Counterpulsation reduced flow with femoral cannulation but improved flow and pressure with axillar cannulation. Femoral cannulation failed to provide oxygenated blood to coronary and supraaortic arteries with residual heart function. Central cannulation provided the best hemodynamics and oxygen supply to the brain. With a resting heart but not with an ejecting heart, pulsatile ECMO flow enhanced CA hemodynamics.

Keywords

Extracorporeal circulation Circulatory support Mock circulation Intraaortic balloon pump Surplus hemodynamic energy 

Abbreviations

CA

Carotid arteries

ECMO

Extracorporeal membrane oxygenation

EEP

Energy equivalent pressure

IABP

Intraaortic balloon pump

LCCA

Left common carotid artery

RCCA

Right common carotid artery

SHE

Surplus hemodynamic energy

VA ECMO

Veno-arterial ECMO

VAD

Ventricular assist device

Notes

Acknowledgments

The authors wish to thank Tobias Böckers, Ulrich Fassnacht, and Ernst Voigt (Department of Anatomy and Cell Biology, University of Ulm, Germany) as well as Hagen Gorki (Department of Cardiothoracic and Vascular Surgery, University of Ulm Medical Center, Ulm, Germany) for their permission for and support in creating the aortic wax cast from a body donor. The help of the students Jakub Fusiak and Sarah Math was indispensable for assembling the mock loop and for writing its data acquisition software. This study was generously supported by Medos (Heilbronn, Germany) who provided the VAD and ECMO systems for the duration of this study as well as funds that partially covered the costs of the mock loop components.

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

This short movie clip shows the aortic model during pulsatile flow generated by the ventricular assist device which serves as the left ventricle of the mock loop. The flow rate is 4.1 L/min at 65 beats per minute, a mean arterial pressure of approx. 105 mmHg, and a pulse amplitude of approx. 50 mmHg (MP4 6047 kb)

10439_2017_1875_MOESM2_ESM.pdf (5.9 mb)
Flow and pressure waveforms in the right common carotid artery. All graphs use the same scaling. The abscissa shows the time (0–10 s). The ordinates show the flow (black, 0.15–0.52 mL/min) and the pressure (red, 45–260 mmHg) in the right common carotid artery of the model (PDF 5994 kb)

References

  1. 1.
    Banfi, C., M. Pozzi, M. Brunner, F. Rigamonti, N. Murith, D. Mugnai, J. Obadia, K. Bendjelid, and R. Giraud. Veno-arterial extracorporeal membrane oxygenation: an overview of different cannulation techniques. J. Thorac. Dis. 8:E875–E885, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Belohlavek, J., M. Mlček, M. Huptych, T. Svoboda, S. Havránek, P. Ošt’ádal, T. Bouček, T. Kovárník, F. Mlejnský, V. Mrázek, M. Bělohlávek, M. Aschermann, A. Linhart, and O. Kittnar. Coronary versus carotid blood flow and coronary perfusion pressure in a pig model of prolonged cardiac arrest treated by different modes of venoarterial ECMO and intraaortic balloon counterpulsation. Crit. Care 16:R50, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chemla, D., J. L. Hébert, C. Coirault, K. Zamani, I. Suard, P. Colin, and Y. Lecarpentier. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am. J. Physiol. 274:H500–H505, 1998.PubMedGoogle Scholar
  4. 4.
    Cheng, R., R. Hachamovitch, M. Kittleson, J. Patel, F. Arabia, J. Moriguchi, F. Esmailian, and B. Azarbal. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann. Thorac. Surg. 97:610–616, 2014.CrossRefPubMedGoogle Scholar
  5. 5.
    den Hartog, A. W., R. Franken, P. de Witte, T. Radonic, H. A. Marquering, W. E. van der Steen, J. Timmermans, A. J. Scholte, M. P. van den Berg, A. H. Zwinderman, B. J. M. Mulder, and M. Groenink. Aortic disease in patients with Marfan syndrome: aortic volume assessment for surveillance. Radiology 269:370–377, 2013.CrossRefGoogle Scholar
  6. 6.
    Eloi, J. C., M. Epifanio, J. V. N. Spolidoro, P. Camargo, J. Krebs, M. D. Mizerkowski, and M. Baldisserotto. Doppler US measurement of the superior mesenteric artery blood flow in children and adolescents. Pediatr. Radiol. 42:1465–1470, 2012.CrossRefPubMedGoogle Scholar
  7. 7.
    Extracorporeal Life Support Organization. ELSO guidelines. http://www.elso.org/Resources/Guidelines.aspx. Retrieved 18 May 2017.
  8. 8.
    Greene, E. R., M. D. Venters, P. S. Avasthi, R. L. Conn, and R. W. Jahnke. Noninvasive characterization of renal artery blood flow. Kidney Int. 20:523–529, 1981.CrossRefPubMedGoogle Scholar
  9. 9.
    Hennen, B., T. Markwirth, B. Scheller, H. J. Schäfers, and O. Wendler. Do changes in blood flow in the subclavian artery affect flow volume in IMA grafts after complete arterial revascularization with the T-graft technique? Thorac. Cardiovasc. Surg. 49:84–88, 2001.CrossRefPubMedGoogle Scholar
  10. 10.
    Hoenicka, M., S. Schrammel, J. Bursa, G. Huber, H. Bronger, C. Schmid, and D. E. Birnbaum. Development of endothelium-denuded human umbilical veins as living scaffolds for tissue-engineered small caliber vascular grafts. J. Tissue Eng. Regen. Med. 7:324–336, 2013.CrossRefPubMedGoogle Scholar
  11. 11.
    Hoeper, M. M., I. Tudorache, C. Kühn, G. Marsch, D. Hartung, O. Wiesner, O. Boenisch, A. Haverich, and J. Hinrichs. Extracorporeal membrane oxygenation watershed. Circulation 130:864–865, 2014.CrossRefPubMedGoogle Scholar
  12. 12.
    Hogue, C. W., C. A. Palin, and J. E. Arrowsmith. Cardiopulmonary bypass management and neurologic outcomes: an evidence-based appraisal of current practices. Anesth. Analg. 103:21–37, 2006.CrossRefPubMedGoogle Scholar
  13. 13.
    Jayewardene, I. D., A. Xie, A. Iyer, R. Pye, and K. Dhital. Development of a Mock Extra Corporeal Membrane Oxygenation (ECMO) Circuit to Assess Recirculation. ASAIO J. 62:496–497, 2016.CrossRefPubMedGoogle Scholar
  14. 14.
    Limberg, J. K., R. E. Johansson, P. E. McBride, and W. G. Schrage. Increased leg blood flow and improved femoral artery shear patterns in metabolic syndrome after a diet and exercise programme. Clin. Physiol. Funct. Imaging 34:282–289, 2014.CrossRefPubMedGoogle Scholar
  15. 15.
    Lunz, D., A. Philipp, M. Dolch, F. Born, and Y. A. Zausig. Veno-arterial extracorporeal membrane oxygenation. Indications, limitations and practical implementation. Anaesthesist 63:625–635, 2014.CrossRefPubMedGoogle Scholar
  16. 16.
    Minich, L. L., L. Y. Tani, J. A. Hawkins, R. R. Bartkowiak, M. L. Royall, and G. M. Pantalos. In vitro evaluation of the effect of aortic compliance on pediatric intra-aortic balloon pumping. Pediatr. Crit. Care Med. 2:139–144, 2001.CrossRefPubMedGoogle Scholar
  17. 17.
    Murphy, G. S., E. A. Hessel, 2nd, and R. C. Groom. Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anesth. Analg. 108:1394–1417, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Napp, L. C., C. Kühn, M. M. Hoeper, J. Vogel-Claussen, A. Haverich, A. Schäfer, and J. Bauersachs. Cannulation strategies for percutaneous extracorporeal membrane oxygenation in adults. Clin. Res. Cardiol. 105:283–296, 2016.CrossRefPubMedGoogle Scholar
  19. 19.
    Pantalos, G. M., C. Ionan, S. C. Koenig, K. J. Gillars, T. Horrell, S. Sahetya, J. Colyer, and L. A. Gray, Jr. Expanded pediatric cardiovascular simulator for research and training. ASAIO J. 56:67–72, 2010.CrossRefPubMedGoogle Scholar
  20. 20.
    Patel, S., S. Wang, L. Pauliks, D. Chang, J. B. Clark, A. R. Kunselman, and A. Undar. Evaluation of a novel pulsatile extracorporeal life support system synchronized to the cardiac cycle: effect of rhythm changes on hemodynamic performance. Artif. Organs 39:67–76, 2015.CrossRefPubMedGoogle Scholar
  21. 21.
    Pfluecke, C., M. Christoph, S. Kolschmann, D. Tarnowski, M. Forkmann, S. Jellinghaus, D. M. Poitz, C. Wunderlich, R. H. Strasser, S. Schoen, and K. Ibrahim. Intra-aortic balloon pump (IABP) counterpulsation improves cerebral perfusion in patients with decreased left ventricular function. Perfusion. 29:511–516, 2014.CrossRefPubMedGoogle Scholar
  22. 22.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/, 2014.
  23. 23.
    Schampaert, S., K. A. M. A. Pennings, M. J. G. van de Molengraft, N. H. J. Pijls, F. N. van de Vosse, and M. C. M. Rutten. A mock circulation model for cardiovascular device evaluation. Physiol. Meas. 35:687–702, 2014.CrossRefPubMedGoogle Scholar
  24. 24.
    Shadwick, R. E. Mechanical design in arteries. J. Exp. Biol. 202:3305–3313, 1999.PubMedGoogle Scholar
  25. 25.
    Shepard, R. B., D. C. Simpson, and J. F. Sharp. Energy equivalent pressure. Arch. Surg. 93:730–740, 1966.CrossRefPubMedGoogle Scholar
  26. 26.
    Spratt, J. R., G. Raveendran, K. Liao, and R. John. Novel percutaneous mechanical circulatory support devices and their expanding applications. Expert Rev. Cardiovasc. Ther. 14:1133–1150, 2016.CrossRefPubMedGoogle Scholar
  27. 27.
    Uematsu, S., A. Yang, T. J. Preziosi, R. Kouba, and T. J. Toung. Measurement of carotid blood flow in man and its clinical application. Stroke 14:256–266, 1983.CrossRefPubMedGoogle Scholar
  28. 28.
    Undar, A. Myths and truths of pulsatile and nonpulsatile perfusion during acute and chronic cardiac support. Artif. Organs 28:439–443, 2004.CrossRefPubMedGoogle Scholar
  29. 29.
    van Nunen, L. X., M. Noc, N. K. Kapur, M. R. Patel, D. Perera, and N. H. J. Pijls. Usefulness of intra-aortic balloon pump counterpulsation. Am. J. Cardiol. 117:469–476, 2016.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang, S., N. Haines, and A. Undar. Quantification of pressure-flow waveforms and selection of components for the pulsatile extracorporeal circuit. J. Extra Corpor. Technol. 41:P20–P25, 2009.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Xie, A., K. Phan, Y. Tsai, T. D. Yan, and P. Forrest. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest: a meta-analysis. J. Cardiothorac. Vasc. Anesth. 29:637–645, 2015.CrossRefPubMedGoogle Scholar
  32. 32.
    Yang, F., Z. Jia, J. Xing, Z. Wang, Y. Liu, X. Hao, C. Jiang, H. Wang, M. Jia, and X. Hou. Effects of intra-aortic balloon pump on cerebral blood flow during peripheral venoarterial extracorporeal membrane oxygenation support. J. Transl. Med. 12:106, 2014.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  1. 1.Department of Cardiothoracic and Vascular SurgeryUniversity of Ulm Medical CenterUlmGermany

Personalised recommendations