Annals of Biomedical Engineering

, Volume 45, Issue 9, pp 2075–2087 | Cite as

Carbon Nanotube Reinforced Collagen/Hydroxyapatite Scaffolds Improve Bone Tissue Formation In Vitro and In Vivo

  • Zheng Jing
  • Yeke Wu
  • Wen Su
  • Mi Tian
  • Wenlu Jiang
  • Li Cao
  • Lixing ZhaoEmail author
  • Zhihe Zhao


Current bone regeneration strategies faced major challenges in fabricating the bionic scaffolds with nano-structure, constituents and mechanical features of native bone. In this study, we developed a new porous scaffold by adding the multi-walled carbon nanotube (MWCNT) into collagen (Col)/hydroxyapatite (HA) composites. Data showed that 0.5%CNT/Col/HA (0.5%CNT) group was approximately tenfolds stiffer than Col–HA, and it was superior in promoting bone marrow mesenchymal stem proliferation and spreading, mRNA and protein expressions of bone sialoprotein (BSP) and osteocalcin (OCN) than Col–HA group. Moreover, we utilized 0.5%CNT composite to repair the rat calvarial defects (8 mm diameter) in vivo, and observed the new bone formation by 3D reconstruction of micro CT, HE and Masson staining, and BSP, OCN by immunohistochemical analysis. Results showed that newly formed bone in 0.5%CNT group was significantly higher than that in Col–HA group at 12 weeks. These findings highlighted a promising strategy in healing of large area bone defect with MWCNT added into the Col–HA scaffold as they possessed the combined effects of mechanical strength and osteogenicity.


Multi-walled carbon nanotube Osteogenesis Calvarial defect Bone regeneration Nanotechnology 



This work was supported by grants from National Nature Science Foundation of China (Nos. 31271052, 31470904, 31670992), Sichuan Provincial Science and Technology Department Fund (No. 2013SZ0057), and Medical Scientific Research Projects of Chongqing Health Department (No. 2013-2-070), Program for Innovation Team Building at Institutions of Higher Education in Chongqing in 2016 (CXTDG201602006), and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education.


  1. 1.
    Bettinger, C. J., R. Langer, and J. T. Borenstein. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Ed. Engl. 48:5406–5415, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen, X., U. C. Tam, and J. L. Czlapinski. Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128:6292–6293, 2006.CrossRefPubMedGoogle Scholar
  3. 3.
    Cheng, Q., K. Rutledge, and E. Jabbarzadeh. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Ann. Biomed. Eng. 41:904–916, 2013.CrossRefPubMedGoogle Scholar
  4. 4.
    Christenson, R. H. Biochemical markers of bone metabolism: an overview. Clin. Biochem. 30:573–593, 1997.CrossRefPubMedGoogle Scholar
  5. 5.
    Cicciù, M., A. S. Herford, G. Juodžbalys, and E. Stoffella. Recombinant human bone morphogenetic protein type 2 application for a possible treatment of bisphosphonates-related osteonecrosis of the jaw. J. Craniofac. Surg. 23:784–788, 2012.CrossRefPubMedGoogle Scholar
  6. 6.
    Cranford, S. W., J. Boer, C. van Blitterswijk, and M. J. Buehler. Materiomics: an -omics approach to biomaterials research. Adv. Mater., 25:802−824, 2013.CrossRefPubMedGoogle Scholar
  7. 7.
    Ganss, B., R. H. Kim, and J. Sodek. Bone sialoprotein. Crit. Rev. Oral Biol. Med. 10:79–98, 1999.CrossRefPubMedGoogle Scholar
  8. 8.
    Harrison, B. S., and A. Atala. Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353, 2007.CrossRefPubMedGoogle Scholar
  9. 9.
    Herford, A. S., and M. Cicciù. Recombinant human bone morphogenetic protein type 2 jaw reconstruction in patients affected by giant cell tumor. J. Craniofac. Surg. 21:1970–1975, 2010.CrossRefPubMedGoogle Scholar
  10. 10.
    Herford, A. S., M. Cicciù, and L. F. Eftimie. rhBMP-2 applied as support of distraction osteogenesis: A split-mouth histological study over nonhuman primates mandibles. Int. J. Clin. Exp. Med. 9:17187–17194, 2016.Google Scholar
  11. 11.
    Herford, A. S., R. Tandon, T. W. Stevens, E. Stoffella, and M. Cicciu. Immediate distraction osteogenesis: the sandwich technique in combination with rhBMP-2 for anterior maxillary and mandibular defects. J. Craniofac. Surg. 24:1383–1387, 2013.CrossRefPubMedGoogle Scholar
  12. 12.
    Laino, L., I. Giovanna, P. Adriano, L. M. Lorenzo, and M. Cicciù. Vertical ridge augmentation of the atrophic posterior mandible with sandwich technique: bone block from the chin area versus corticocancellous bone block allograft–clinical and histological prospective randomized controlled study. Biomed. Res. Int. 2014:982104, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liao, S. S., F. Z. Cui, W. Zhang, and Q. L. Feng. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. B Appl. Biomater. 69:158–165, 2004.CrossRefPubMedGoogle Scholar
  14. 14.
    Marco, C., A. S. Herford, D. Cicciù, R. Tandon, and C. Maiorana. Recombinant human bone morphogenetic protein-2 promote and stabilize hard and soft tissue healing for large mandibular new bone reconstruction defects. J. Craniofac. Surg. 25:860–862, 2014.CrossRefGoogle Scholar
  15. 15.
    Namgung, S., K. Y. Baik, J. Park, and S. Hong. Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano. 5:7383–7390, 2011.CrossRefPubMedGoogle Scholar
  16. 16.
    Narita, N., Y. Kobayashi, and H. Nakamura. Multiwalled carbon nanotubes specifically inhibit osteoclast differentiation and function. Nano Lett. 9:1406–1413, 2009.CrossRefPubMedGoogle Scholar
  17. 17.
    Nel, A. E., L. Mädler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8:543–557, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Newman, P., A. Minett, R. Ellis-Behnke, and H. Zreiqat. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine. 9:1139–1158, 2013.CrossRefPubMedGoogle Scholar
  19. 19.
    Niu, L., H. Kua, and D. H. Chua. Bonelike apatite formation utilizing carbon nanotubes as template. Langmuir 26:4069–4073, 2010.CrossRefPubMedGoogle Scholar
  20. 20.
    Oh, S., K. S. Brammer, Y. S. J. Li, D. Teng, A. J. Engler, and S. Chien. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA 106:2130–2135, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Petrauskaite, O., P. Gomes, and M. H. Fernandes. Biomimetic mineralization on a microporous cellulose-based matrix for bone regeneration. Biomed. Res. Int. 2013:452750, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shen, X., L. Chen, X. Cai, T. Tong, H. Tong, and J. Hu. A novel method for the fabrication of homogeneous hydroxyapatite/collagen nanocomposite and nanocomposite scaffold with hierarchical porosity. J. Mater. Sci. Mater. Med. 22:299–305, 2011.CrossRefPubMedGoogle Scholar
  23. 23.
    Shimizu, M., Y. Kobayashi, and T. Mizoguchi. Carbon nanotubes induce bone calcification by bidirectional interaction with osteoblasts. Adv. Mater. 24:2176–2185, 2012.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang, S. F., L. Shen, W. D. Zhang, and Y. J. Tong. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromol 6:3067–3072, 2005.CrossRefGoogle Scholar
  25. 25.
    Wick, P., P. Manser, and L. K. Limbach. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168:121–131, 2007.CrossRefPubMedGoogle Scholar
  26. 26.
    Xiao, Y., T. Gong, and S. Zhou. The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite. Biomaterials 31:5182–5190, 2010.CrossRefPubMedGoogle Scholar
  27. 27.
    Zanello, L. P., B. Zhao, H. Hu, and R. C. Haddon. Bone cell proliferation on carbon nanotubes. Nano Lett. 6:562–567, 2006.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao, B., H. Hu, S. K. Mandal, and R. C. Haddon. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 17:3235–3241, 2005.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Zheng Jing
    • 1
  • Yeke Wu
    • 2
  • Wen Su
    • 3
  • Mi Tian
    • 4
  • Wenlu Jiang
    • 4
  • Li Cao
    • 1
  • Lixing Zhao
    • 4
    Email author
  • Zhihe Zhao
    • 4
  1. 1.Chongqing Key Laboratory of Oral Diseases and Biomedical Science, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of StomatologyAffiliated Hospital of Chengdu University of TCMChengduPeople’s Republic of China
  3. 3.National Engineering Research Center for BiomaterialsSichuan UniversityChengduPeople’s Republic of China
  4. 4.State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduPeople’s Republic of China

Personalised recommendations