A Single-Port Robotic Platform for Laparoscopic Surgery with a Large Central Channel for Additional Instrument

  • 571 Accesses

  • 2 Citations


A new approach to a surgical robotic platform for single incision laparoscopic or natural orifice transluminal endoscopic surgery is presented in this paper This platform allows insertion of up to four instruments including the robotic arms and the camera through a single cannula at the same footprint. After insertion of all instruments, a large central channel of 15 mm diameter is kept clear for the passage of additional laparoscopic instruments, such as passage or retrieval of suture needles, and/or suction irrigators which greatly facilitates the performance of complex surgical procedures. Phantom and animal trials have been performed to evaluate the insertion and retrieval sequences. These important features were made possible by internally-motorized robotic arms with 7 degrees of freedom and with no external mechanical device connections. The whole platform, together with the 3 degrees of freedom from the swivel system that support the cannula, has altogether 10 degrees of freedom to allow the operation of complex surgeries and access to all quadrants of the abdominal cavity. This new single-port robotic platform paves a new development direction for future non-invasive surgery.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. 1.

    Asakuma, M., S. Perretta, P. Allemann, R. Cahill, S. A. Con, C. Solano, S. Pasupathy, D. Mutter, B. Dallemagne, and J. Marescaux. Challenges and lessons learned from NOTES cholecystectomy initial experience: a stepwise approach from the laboratory to clinical application. J. Hepatobiliary Pancreat. Surg. 16:249–254, 2009.

  2. 2.

    Bhayani, S. B., and G. L. Andriole. Three-dimensional (3D) vision: does it improve laparoscopic skills? An assessment of a 3D head-mounted visualization system. Rev. Urol. 7:211–214, 2005.

  3. 3.

    Chandra, V., D. Nehra, R. Parent, R. Woo, R. Reyes, T. Hernandez-Boussard, and S. Dutta. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices. Surgery 147:830–839, 2010.

  4. 4.

    Cheon, B., E. Gezgin, D. K. Ji, M. Tomikawa, M. Hashizume, H. J. Kim, and J. Hong. A single port laparoscopic surgery robot with high force transmission and a large workspace. Surg. Endosc. 28:2719–2729, 2014.

  5. 5.

    Ersin, S., O. Firat, and M. Sozbilen. Single-incision laparoscopic cholecystectomy: is it more than a challenge? Surg. Endosc. 24:68–71, 2010.

  6. 6.

    Kaouk, J. H., R. K. Goel, G. P. Haber, S. Crouzet, and R. J. Stein. Robotic single-port transumbilical surgery in humans: initial report. BJU Int. 103:366–369, 2009.

  7. 7.

    Kaouk, J. H., G. P. Haber, R. Autorino, S. Crouzet, A. Ouzzane, V. Flamand, and A. Villers. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur. Urol. 66:1033–1043, 2014.

  8. 8.

    Lehman, A. C., J. Dumpert, N. A. Wood, L. Redden, A. Q. Visty, S. Farritor, B. Varnell, and D. Oleynikov. Natural orifice cholecystectomy using a miniature robot. Surg. Endosc. 23:260–266, 2009.

  9. 9.

    Leong, F., N. Garbin, C. D. Natali, A. Mohammadi, D. Thiruchelvam, D. Oetomo, and P. Valdastri. Magnetic surgical instruments for robotic abdominal surgery. IEEE Rev. Biomed. Eng. 9:66–78, 2016.

  10. 10.

    Nicolau, S., L. Soler, D. Mutter, and J. Marescaux. Augmented reality in laparoscopic surgical oncology. Surg. Oncol. 20:189–201, 2011.

  11. 11.

    Payne, C. J., H. J. Marcus, and G. Yang. A smart haptic hand- held device for neurosurgical microdissection. Ann. Biomed. Eng. 43:2185–2195, 2015.

  12. 12.

    Quaglia, C., G. Petroni, M. Niccolini, S. Caccavaro, P. Dario, and A. Menciassi. Design of a compact robotic manipulator for single- port laparoscopy (author abstract). J. Mech. Design 136:105001, 2014.

  13. 13.

    Samson, H. Titan Medical Inc. Completes Functional Prototype of Its Single Port Orifice Robotic Technology (SPORT(TM)) Surgical System. Toronto: Marketwired, 2013.

  14. 14.

    Shang, J., K. Leibrandt, P. Giataganas, V. Vitiello, C. A. Seneci, P. Wisanuvej, J. Liu, G. Gras, J. Clark, A. Darzi, and G. Yang. A single-port robotic system for transanal micro-surgery—design and validation. IEEE Robot. Autom. Lett. 2:1510–1517, 2017.

  15. 15.

    Shang, J., C. J. Payne, J. Clark, D. P. Noonan, K. W. Kwok, A. Darzi, and G. Z. Yang. Design of a multitasking robotic platform with flexible arms and articulated head for minimally invasive surgery. Rep. U. S. 2012:1988–1993, 2012.

  16. 16.

    Shin, Won-Ho, and Dong-Soo Kwon. Surgical robot system for single-port surgery with novel joint mechanism. IEEE Trans. Biomed. Eng. 60:937–944, 2013.

  17. 17.

    Simaan, N., K. Xu, A. Kapoor, W. Wei, P. Kazanzides, P. Flint, and R. Taylor. Design and integration of a telerobotic system for minimally invasive surgery of the throat. Int. J. Rob. Res. 28:1134–1153, 2009.

  18. 18.

    Smith, R., A. Day, T. Rockall, K. Ballard, M. Bailey, and I. Jourdan. Advanced stereoscopic projection technology significantly improves novice performance of minimally invasive surgical skills. Surg. Endosc. 26:1522–1527, 2012.

  19. 19.

    Stiff, G., M. Rhodes, A. Kelly, K. Telford, C. P. Armstrong, and B. I. Rees. Long-term pain: less common after laparoscopic than open cholecystectomy. Br. J. Surg. 81:1368–1370, 1994.

  20. 20.

    Tacchino, R., F. Greco, and D. Matera. Single-incision laparoscopic cholecystectomy: surgery without a visible scar. Surg. Endosc. 23:896–899, 2009.

  21. 21.

    Wortman, T. D., A. Meyer, O. Dolghi, A. C. Lehman, R. L. McCormick, S. M. Farritor, and D. Oleynikov. Miniature surgical robot for laparoendoscopic single-incision colectomy. Surg. Endosc. 26:727–731, 2012.

  22. 22.

    Wortman, T. D., K. W. Strabala, A. C. Lehman, S. M. Farritor, and D. Oleynikov. Laparoendoscopic single- site surgery using a multi- functional miniature in vivo robot. Int. J. Med. Robot. Comput. Assist. Surg. 7:17, 2011.

  23. 23.

    Xu, K., R. E. Goldman, J. Ding, P. K. Allen, D. L. Fowler, and N. Simaan. System design of an insertable robotic effector platform for single port access (SPA) surgery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 2009, pp. 5546–5552, 2009.

  24. 24.

    Zhao, J., B. Feng, M. H. Zheng, and K. Xu. Surgical robots for SPL and NOTES: a review. Minim. Invasive Ther. Allied Technol. 24:8–17, 2015.

  25. 25.

    Zornig, C., H. Mofid, A. Emmermann, M. Alm, H. A. von Waldenfels, and C. Felixmuller. Scarless cholecystectomy with combined transvaginal and transumbilical approach in a series of 20 patients. Surg. Endosc. 22:1427–1429, 2008.

Download references


This work is funded by the Innovation and Technology Commission of HKSAR (Project No.: ITS/149/13FX) and Bio-Medical Engineering (HK) Limited.

Author information

Correspondence to C. K. Yeung.

Additional information

Associate Editor K. Jane Grande-Allen oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 5173 kb)

Supplementary material 1 (MP4 5173 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yung, K.L., Cheung, J.L.K., Chung, S.W. et al. A Single-Port Robotic Platform for Laparoscopic Surgery with a Large Central Channel for Additional Instrument. Ann Biomed Eng 45, 2211–2221 (2017).

Download citation


  • Minimally invasive surgery
  • Cannula
  • Anchoring
  • Laparoscopic surgery