Annals of Biomedical Engineering

, Volume 45, Issue 9, pp 2253–2263 | Cite as

Pulse Rate and Transit Time Analysis to Predict Hypotension Events After Spinal Anesthesia During Programmed Cesarean Labor

  • Juan BoleaEmail author
  • Jesús Lázaro
  • Eduardo Gil
  • Eva Rovira
  • José M. Remartínez
  • Pablo Laguna
  • Esther Pueyo
  • Augusto Navarro
  • Raquel Bailón


Prophylactic treatment has been proved to reduce hypotension incidence after spinal anesthesia during cesarean labor. However, the use of pharmacological prophylaxis could carry out undesirable side-effects on mother and fetus. Thus, the prediction of hypotension becomes an important challenge. Hypotension events are hypothesized to be related to a malfunctioning of autonomic nervous system (ANS) regulation of blood pressure. In this work, ANS responses to positional changes of 51 pregnant women programmed for a cesarean labor were explored for hypotension prediction. Lateral and supine decubitus, and sitting position were considered while electrocardiographic and pulse photoplethysmographic signals were recorded. Features based on heart rate variability, pulse rate variability (PRV) and pulse transit time (PTT) analysis were used in a logistic regression classifier. The results showed that PRV irregularity changes, assessed by approximate entropy, from supine to lateral decubitus, and standard deviation of PTT in supine decubitus were found as the combination of features that achieved the best classification results sensitivity of 76%, specificity of 70% and accuracy of 72%, being normotensive the positive class. Peripheral regulation and blood pressure changes, measured by PRV and PTT analysis, could help to predict hypotension events reducing prophylactic side-effects in the low-risk population.


Heart rate variability Nonlinear analysis Pulse rate Pulse transit time Hypotension Cesarean section 



This work was funded under Projects TEC2013-42140-R, TIN2013-41998-R and TIN2014-53567-R by MINECO (Spain) and by BSICOS Group (T96) from Government of Aragón and European Social Fund (EU), and by ISCIII, Spain, through Project PI10/02851(FIS). CIBER is a center of the Instituto de Salud Carlos III in assistance from the European Regional Development Fund. The computation was performed by the ICTS “NANBIOSIS”, more specifically by the High Performance Computing Unit of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN) at the University of Zaragoza.


  1. 1.
    Akselrod, S., D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Berger, and R. J. Cohen. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504):220–222, 1981.CrossRefPubMedGoogle Scholar
  2. 2.
    Allen, T. K., R. B. George, W. D. White, H. A. Muir, and A. S. Habib. A double-blind, placebo-controlled trial of four fixed rate infusion regimens of phenylephrine for hemodynamic support during spinal anesthesia for cesarean delivery. Anesth. Analg. 111(5):1221–1229, 2010.CrossRefPubMedGoogle Scholar
  3. 3.
    Bailon, R., P. Laguna, L. Mainardi, and L. Sornmo. Analysis of heart rate variability using time-varying frequency bands based on respiratory frequency. Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 6675–6678, 2007.Google Scholar
  4. 4.
    Bailón, R., G. Laouini, C. Grao, M. Orini, P. Laguna, and O. Meste. The integral pulse frequency modulation model with time-varying threshold: application to heart rate variability analysis during exercise stress testing. IEEE Trans. Biomed. Eng. 58(3):642–652, 2011.CrossRefPubMedGoogle Scholar
  5. 5.
    Betrán, A. P., J. Ye, A.-B. Moller, J. Zhang, A. M. Gülmezoglu, and M. R. Torloni. The increasing trend in caesarean section rates: global, regional and national estimates: 1990–2014. PLoS One 11(2):e0148343, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bolea, J., R. Bailón, E. Rovira, J. M. Remartínez, P. Laguna, and A. Navarro. Heart rate variability in pregnant women before programmed Cesarean intervention. Conf. Proc. IFMBE 41:710–713, 2014.CrossRefGoogle Scholar
  7. 7.
    Bolea, J., P. Laguna, J. M. Remartínez, E. Rovira, A. Navarro, and R. Bailón. Methodological framework for estimating the correlation dimension in HRV signals. Comput. Math. Methods Med. Vol 2014, Article ID 129248,1–11. doi: 10.1155/2014/129248.
  8. 8.
    Bolea, J., E. Pueyo, M. Orini, and R. Bailón. Influence of heart rate in nonlinear HRV indices as a sampling rate effect evaluated on supine and standing. Front. Physiol. 7:501, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brenck, F., B. Hartmann, C. Katzer, R. Obaid, D. Brüggmann, M. Benson, R. Röhrig, and A. Junger. Hypotension after spinal anesthesia for cesarean section: identification of risk factors using an anesthesia information management system. J. Clin. Monit. Comput. 23(2):85–92, 2009.CrossRefPubMedGoogle Scholar
  10. 10.
    Chamchad, D., V. A. Arkoosh, J. C. Horrow, J. L. Buxbaum, I. Izrailtyan, L. Nakhamchik, D. Hoyer, and J. Y. Kresh. Using heart rate variability to stratify risk of obstetric patients undergoing spinal anesthesia. Anesth. Analg. 99(6):1818–1821, 2004.CrossRefPubMedGoogle Scholar
  11. 11.
    Chua, C. P., and C. Heneghan. Pulse transit time-derived respiratory parameters and their variability across sleep stages. Proc. Annu. Int. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6:6153–6156, 2005.Google Scholar
  12. 12.
    Cleary-Goldman, J., M. Negron, J. Scott, R. A. Downing, W. Camann, L. Simpson, and P. Flood. Prophylactic ephedrine and combined spinal epidural: maternal blood pressure and fetal heart rate patterns. Obstet. Gynecol. 106(3):466–472, 2005.CrossRefPubMedGoogle Scholar
  13. 13.
    Dishman, R. K., Y. Nakamura, M. E. Garcia, R. W. Thompson, A. L. Dunn, and S. N. Blair. Heart rate variability, trait anxiety, and perceived stress among physically fit men and women. Int. J. Psychophysiol. 37(2):121–133, 2000.CrossRefPubMedGoogle Scholar
  14. 14.
    Efron, B., and R. J. Tibshirani. An Introduction to the Bootstrap. Boca Raton: CRC Press, 1994.Google Scholar
  15. 15.
    Ghabach, M. B., M. F. El-Khatib, T. G. Zreik, M. S. Matta, J. J. Mouawad, C. J. Karam, and C. M. Ayoub. Effect of weight gain during pregnancy on heart rate variability and hypotension during caesarean section under spinal anaesthesia. Anaesthesia 66(12):1106–1111, 2012.CrossRefGoogle Scholar
  16. 16.
    Gil, E., R. Bailón, J. M. Vergara, and P. Laguna. PTT variability for discrimination of sleep apnea related decreases in the amplitude fluctuations of PPG signal in children. IEEE Trans. Biomed. Eng. 57(5):1079–1088, 2010.CrossRefPubMedGoogle Scholar
  17. 17.
    Gil, E., M. Orini, R. Bailón, J. M. Vergara, and P. Laguna. Comparative analysis between PPG variability and HRV during non-stationary tilt table test. Conf. Proc. ESGCO, pp. 1–4, 2010.Google Scholar
  18. 18.
    Gil, E., M. Orini, R. Bailón, J. M. Vergara, L. Mainardi, and P. Laguna. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol. Meas. 31(9):1271–1290, 2010.CrossRefPubMedGoogle Scholar
  19. 19.
    Hanss, R., B. Bein, T. Ledowski, M. Lehmkuhl, H. Ohnesorge, W. Scherkl, M. Steinfath, J. Scholz, and P. H. Tonner. Heart rate variability predicts severe hypotension after spinal anaesthesia for elective caeserean delivery. Anesthesiology 102(6):1086–1093, 2005.CrossRefPubMedGoogle Scholar
  20. 20.
    Hawkins, J. L., J. Chang, S. K. Palmer, C. P. Gibbs, and W. M. Callaghan. Anesthesia-related maternal mortality in the United States: 1979-2002. Obstet. Gynecol. 117(1):69–74, 2011.CrossRefPubMedGoogle Scholar
  21. 21.
    Hirsch, J. A., and B. Bishop. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol. 241(4):H620–H629, 1981.PubMedGoogle Scholar
  22. 22.
    Houtveen, J. H., P. F. C. Groot, and E. J. C. Geus. Effects of variation in posture and respiration on RSA and pre-ejection period. Psychophysiology 42(6):713–719, 2005.CrossRefPubMedGoogle Scholar
  23. 23.
    Ilies, C., H. Kiskalt, D. Siedenhans, P. Meybohm, M. Steinfath, B. Bein, and R. Hanss. Detection of hypotension during Caesarean section with continuous non-invasive arterial pressure device or intermittent oscillometric arterial pressure measurement. Br. J. Anaesth. 109(3):413–419, 2012.CrossRefPubMedGoogle Scholar
  24. 24.
    Kinsella, S. M., and M. C. Norris. Advance prediction of hypotension at cesarean delivery under spinal anesthesia. Int. J. Obstet. Anesth. 5(1):3–7, 1996.CrossRefPubMedGoogle Scholar
  25. 25.
    Kyokong, O., S. Charuluxananan, P. Sriprajittichai, T. Poomseetong, and P. Naksin. The incidence and risk factors of hypotension and bradycardia associated with spinal anesthesia. J. Med. Assoc. Thai. 89(Suppl 3):S58–S64, 2006.PubMedGoogle Scholar
  26. 26.
    Laurent, S., J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, H. Struijker-Boudier, and European Network for Non-invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27(21):2588–2605, 2006.CrossRefPubMedGoogle Scholar
  27. 27.
    Lázaro, J., A. Alcaine, D. Romero, E. Gil, P. Laguna, E. Pueyo, and R. Bailón. Electrocardiogram derived respiratory rate from QRS slopes and R-wave angle. Ann. Biomed. Eng. 42(10):2072–2083, 2014.CrossRefPubMedGoogle Scholar
  28. 28.
    Lázaro, J., E. Gil, M. Vergara, and P. Laguna. Pulse rate variability analysis for discrimination of sleep-apnea-related decreases in the amplitude fluctuations of pulse photoplethysmographic signal in children. IEEE J. Biomed. Health Inform. 18(1):240–246, 2014.CrossRefPubMedGoogle Scholar
  29. 29.
    Maayan-Metzger, A., I. Schushan-Eisen, L. Todris, A. Etchin, and J. Kuint. Maternal hypotension during elective cesarean section and short-term neonatal outcome. Am. J. Obstet. Gynecol. 202(1):56.e1-5, 2010.CrossRefPubMedGoogle Scholar
  30. 30.
    Martin, S. L.-O., A. M. Carek, C.-S. Kim, H. Ashouri, O. T. Inan, J.-O. Hahn, and R. Mukkamala. Weighing scale-based pulse transit time is a superior marker of blood pressure than conventional pulse arrival time. Sci. Rep. 6:39273, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Martínez, J. P., R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna. A wavelet-based ECG delineator evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4):570–581, 2004.CrossRefPubMedGoogle Scholar
  32. 32.
    Mateo, J., and P. Laguna. Analysis of heart rate variability in the presence of ectopic beats using the heart timing signal. IEEE Trans. Biomed. Eng. 50(3):334–343, 2003.CrossRefPubMedGoogle Scholar
  33. 33.
    Muehlsteff, J., X. L. Aubert, and M. Schuett. Cuffless estimation of systolic blood pressure for short effort bicycle tests: the prominent role of the pre-ejection period. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:5088–5092, 2006.Google Scholar
  34. 34.
    Mukkamala, R., J.-O. Hahn, O. T. Inan, L. K. Mestha, C.-S. Kim, H. Töreyin, and S. Kyal. Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans. Biomed. Eng. 62(8):1879–1901, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ngan Kee, W. D. Prevention of maternal hypotension after regional anaesthesia for caesarean section. Curr. Opin. Anaesthesiol. 23(3):304–309, 2010.CrossRefPubMedGoogle Scholar
  36. 36.
    Orbach-Zinger, S., Y. Ginosar, J. Elliston, C. Fadon, M. Abu-Lil, A. Raz, Y. Goshen-Gottstein, and L. A. Eidelman. Influence of preoperative anxiety on hypotension after spinal anaesthesia in women undergoing Caesarean delivery. Br. J. Anaesth. 109(6):943–949, 2012.CrossRefPubMedGoogle Scholar
  37. 37.
    Payne, R. A., C. N. Symeonides, D. J. Webb, and S. R. J. Maxwell. Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 100(1):136–141, 2006.CrossRefPubMedGoogle Scholar
  38. 38.
    Peter, L., N. Noury, and M. Cerny. A review of methods for non-invasive and continuous blood pressure monitoring: pulse transit time method is promising? IRBM 35:271–282, 2014.CrossRefGoogle Scholar
  39. 39.
    Roberts, S. W., K. J. Leveno, J. E. Sidawi, M. J. Lucas, and M. A. Kelly. Fetal acidemia associated with regional anesthesia for elective cesarean delivery. Obstet. Gynecol. 85(1):79–83, 1995.CrossRefPubMedGoogle Scholar
  40. 40.
    Sakata, K., N. Yoshimura, K. Tanabe, K. Kito, K. Nagase, and H. Iida. Prediction of hypotension during spinal anesthesia for elective cesarean section by altered heart rate variability induced by postural change. Int. J. Obstet. Anesth. 29:34–38, 2017.CrossRefPubMedGoogle Scholar
  41. 41.
    Sharwood-Smith, G., J. Bruce, and G. Drummond. Assessment of pulse transit time to indicate cardiovascular changes during obstetric spinal anaesthesia. Br. J. Anaesth. 96(1):100–105, 2006.CrossRefPubMedGoogle Scholar
  42. 42.
    Yokose, M., T. Mihara, Y. Sugawara, and T. Goto. The predictive ability of non-invasive haemodynamic parameters for hypotension during caesarean section: a prospective observational study. Anaesthesia 70(5):555–562, 2015.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Juan Bolea
    • 1
    • 2
    Email author
  • Jesús Lázaro
    • 1
    • 2
  • Eduardo Gil
    • 1
    • 2
  • Eva Rovira
    • 3
  • José M. Remartínez
    • 3
  • Pablo Laguna
    • 1
    • 2
  • Esther Pueyo
    • 1
    • 2
  • Augusto Navarro
    • 3
  • Raquel Bailón
    • 1
    • 2
  1. 1.BSICoS Group, Aragón Institute of Engineering Research (I3A), IIS AragónUniversity of Zaragoza50018Spain
  2. 2.Centro de Investigación Biomédica en Red BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)MadridSpain
  3. 3.Anaesthesia Service, Hospital Miguel Servet, Faculty of MedicineUniversity of ZaragozaSaragossaSpain

Personalised recommendations