Annals of Biomedical Engineering

, Volume 45, Issue 8, pp 1836–1851 | Cite as

Left Ventricular Assist Devices: Challenges Toward Sustaining Long-Term Patient Care

  • Marianne Schmid Daners
  • Friedrich Kaufmann
  • Raffael Amacher
  • Gregor Ochsner
  • Markus J. Wilhelm
  • Aldo Ferrari
  • Edoardo Mazza
  • Dimos Poulikakos
  • Mirko Meboldt
  • Volkmar Falk
Article

Abstract

Over the last few decades, the left ventricular assist device (LVAD) technology has been tremendously improved transitioning from large and noisy paracorporeal volume displacement pumps to small implantable turbodynamic devices with only a single transcutaneous element, the driveline. Nevertheless, there remains a great demand for further improvements to meet the challenge of having a robust and safe device for long-term therapy. Here, we review the state of the art and highlight four key areas of needed improvement targeting long-term, sustainable LVAD function: (1) LVADs available today still have a high risk of thromboembolic and bleeding events that could be addressed by the rational fabrication of novel surface structures and endothelialization approaches aiming at improving the device hemocompatibility. (2) Novel, fluid dynamically optimized pump designs will further reduce blood damage. (3) Infection due to the paracorporeal driveline can be avoided with a transcutaneous energy transmission system that additionally allows for increased freedom of movement. (4) Finally, the lack of pump flow adaptation needs to be encountered with physiological control systems, working collaboratively with biocompatible sensor devices, targeting the adaptation of the LVAD flow to the perfusion requirements of the patient. The interdisciplinary Zurich Heart project investigates these technology gaps paving the way toward LVADs for long-term, sustainable therapy.

Keywords

Adverse events Heart failure Cardiac surgery Surface structure Hemocompatibility Fluid dynamics Implantability Physiological control 

Abbreviations

LVAD

Left ventricular assist device

vdLVAD

Volume displacement LVAD

tLVAD

Turbodynamic LVAD

BTT

Bridge to transplant

DT

Destination therapy

CF

Continuous flow

LV

Left ventricular, left ventricle

AV

Aortic valve

TETS

Transcutaneous energy transmission system

DHZB

German Heart Center Berlin

INTERMACS

Interagency registry for mechanically assisted circulatory support

Notes

Acknowledgments

The authors thankfully acknowledge the financial support by the Baugarten Foundation, the Georg und Bertha Schwyzer-Winiker Foundation, the IMG Foundation, the Mäxi Foundation, the Propter Homines Foundation, the Stavros Niarchos Foundation, and the Uniscientia Foundation as well as the ETH Zurich Foundation and the UZH Foundation. This work is part of the Zurich Heart project under the umbrella of University Medicine Zurich. Graphic design of Figs. 1 and 2 by mnemosyne Basel, Switzerland.

Conflict of interest

Aldo Ferrari and Dimos Poulikakos participate in a Spin-off, aiming at the commercialization of biomedical materials and devices for soft tissue repair.

References

  1. 1.
    Agarwal, S., and K. M. High. Newer-generation ventricular assist devices. Best Pract. Res. Clin. Anaesthesiol. 26:117–130, 2012.PubMedCrossRefGoogle Scholar
  2. 2.
    Akhter, S. A., A. Badami, M. Murray, T. Kohmoto, L. Lozonschi, S. Osaki, and E. B. Lushaj. Hospital readmissions after continuous-flow left ventricular assist device implantation: incidence, causes, and cost analysis. Ann. Thorac. Surg. 100:884–889, 2015.PubMedCrossRefGoogle Scholar
  3. 3.
    Almond, C. S., H. Buchholz, P. Massicotte, R. Ichord, D. N. Rosenthal, K. Uzark, R. D. Jaquiss, R. Kroslowitz, M. B. Kepler, A. Lobbestael, et al. Berlin Heart EXCOR Pediatric ventricular assist device investigational device exemption study: study design and rationale. Am. Heart J. 162:425–435, 2011.PubMedCrossRefGoogle Scholar
  4. 4.
    Amacher, R., J. Asprion, G. Ochsner, H. Tevaearai, M. J. Wilhelm, A. Plass, A. Amstutz, S. Vandenberghe, and M. Schmid Daners. Numerical optimal control of turbo dynamic ventricular assist devices. Bioengineering 1:22–46, 2014.CrossRefGoogle Scholar
  5. 5.
    Amacher, R., G. Ochsner, A. Ferreira, S. Vandenberghe, and M. Schmid Daners. A robust reference signal generator for synchronized ventricular assist devices. IEEE Trans. Biomed. Eng. 60:2174–2183, 2013.PubMedCrossRefGoogle Scholar
  6. 6.
    Amacher, R., A. Weber, H. Brinks, S. Axiak, A. Ferreira, L. Guzzella, T. Carrel, J. F. Antaki, and S. Vandenberghe. Control of ventricular unloading using an electrocardiogram-synchronized Thoratec paracorporeal ventricular assist device. J. Thorac. Cardiovasc. Surg. 146:710–717, 2013.PubMedCrossRefGoogle Scholar
  7. 7.
    Anand, J., S. K. Singh, D. G. Antoun, W. E. Cohn, O. H. B. Frazier, and H. R. Mallidi. Durable mechanical circulatory support versus organ transplantation: past, present, and future. Biomed Res Int 2015:849571, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Angud, M. Left ventricular assist device driveline infections: the Achilles’ heel of destination therapy. AACN Adv Crit Care 26:300–305, 2015.PubMedCrossRefGoogle Scholar
  9. 9.
    Arndt, A., P. Nüsser, K. Graichen, J. Müller, and B. Lampe. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient. Artif. Organs 32:761–771, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    Asgari, S. S., and P. Bonde. Implantable physiologic controller for left ventricular assist devices with telemetry capability. J. Thorac. Cardiovasc. Surg. 147:192–202, 2014.PubMedCrossRefGoogle Scholar
  11. 11.
    Bachmann, B. J., L. Bernardi, C. Loosli, J. Marschewski, M. Perrini, M. Ehrbar, P. Ermanni, D. Poulikakos, A. Ferrari, and E. Mazza. A novel bioreactor system for the assessment of endothelialization on deformable surfaces. Sci. Rep. 6:38861, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bhagra, S., C. Bhagra, F. Özalp, T. Butt, B. Ramesh, G. Parry, C. Roysam, A. Woods, N. Robinson-Smith, N. Wrightson, et al. Development of de novo aortic valve incompetence in patients with the continuous-flow HeartWare ventricular assist device. J. Heart Lung Transpl. 35:312–319, 2016.CrossRefGoogle Scholar
  13. 13.
    Bottan, S., F. Robotti, P. Jayathissa, A. Hegglin, N. Bahamonde, J. A. Heredia-Guerrero, I. S. Bayer, A. Scarpellini, H. Merker, N. Lindenblatt, D. Poulikakos, and A. Ferrari. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 9:206–219, 2015.PubMedCrossRefGoogle Scholar
  14. 14.
    Bourque, K., C. Cotter, C. Dague, D. Harjes, O. Dur, J. Duhamel, K. Spink, K. Walsh, and E. Burke. Design rationale and preclinical evaluation of the HeartMate 3 left ventricular assist system for hemocompatibility. ASAIO J. 62:375–383, 2016.PubMedCrossRefGoogle Scholar
  15. 15.
    Brouwers, C., J. Denollet, N. de Jonge, K. Caliskan, J. Kealy, and S. S. Pedersen. Patient-reported outcomes in left ventricular assist device therapy: a systematic review and recommendations for clinical research and practice. Circulation 4:714–723, 2011.PubMedGoogle Scholar
  16. 16.
    Callington, A., Q. Long, P. Mohite, A. Simon, and T. K. Mittal. Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design. J. Thorac. Cardiovasc. Surg. 150:696–704, 2015.PubMedCrossRefGoogle Scholar
  17. 17.
    Carpentier, A., C. Latrémouille, B. Cholley, D. M. Smadja, J.-C. Roussel, E. Boissier, J.-N. Trochu, J.-P. Gueffet, M. Treillot, P. Bizouarn, et al. First clinical use of a bioprosthetic total artificial heart: report of two cases. Lancet 386:1556–1563, 2015.PubMedCrossRefGoogle Scholar
  18. 18.
    Cheung, A., K. Chorpenning, D. Tamez, C. Shambaugh, Jr, A. E. Dierlam, M. E. Taskin, M. Ashenuga, C. Reyes, and J. A. LaRose. Design concepts and preclinical results of a miniaturized HeartWare platform: the MVAD system. Innovations 10:151, 2015.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Cowger, J., V. Rao, T. Massey, B. Sun, K. May-Newman, U. Jorde, and J. D. Estep. Comprehensive review and suggested strategies for the detection and management of aortic insufficiency in patients with a continuous-flow left ventricular assist device. J. Heart Lung Transpl. 34:149–157, 2015.CrossRefGoogle Scholar
  20. 20.
    Crestanello, J. A., D. A. Orsinelli, M. S. Firstenberg, and C. Sai-Sudhakar. Aortic valve thrombosis after implantation of temporary left ventricular assist device. Interact. Cardiovasc. Thorac. Surg. 8:661–662, 2009.PubMedCrossRefGoogle Scholar
  21. 21.
    Crow, S., D. Chen, C. Milano, W. Thomas, L. Joyce, V. Piacentino, R. Sharma, J. Wu, G. Arepally, D. Bowles, et al. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann. Thorac. Surg. 90:1263–1269, 2010.PubMedCrossRefGoogle Scholar
  22. 22.
    Crow, S., R. John, A. Boyle, S. Shumway, K. Liao, M. Colvin-Adams, C. Toninato, E. Missov, M. Pritzker, C. Martin, D. Garry, W. Thomas, and L. Joyce. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J. Thorac. Cardiovasc. Surg. 137:208–215, 2009.PubMedCrossRefGoogle Scholar
  23. 23.
    da Rocha e Silva, J. G., A. L. Meyer, S. Eifert, J. Garbade, F. W. Mohr, and M. Strueber. Influence of aortic valve opening in patients with aortic insufficiency after left ventricular assist device implantation. Eur. J. Cardiothorac. Surg. 49:784–787, 2016.PubMedCrossRefGoogle Scholar
  24. 24.
    DeBakey, M. E. A miniature implantable axial flow ventricular assist device. Ann. Thorac. Surg. 68:637–640, 1999.PubMedCrossRefGoogle Scholar
  25. 25.
    Diakos, N. A., C. H. Selzman, F. B. Sachse, J. Stehlik, A. G. Kfoury, O. Wever-Pinzon, A. Catino, R. Alharethi, B. B. Reid, D. V. Miller, et al. Myocardial atrophy and chronic mechanical unloading of the failing human heart: implications for cardiac assist device-induced myocardial recovery. J. Am. Coll. Cardiol. 64:1602–1612, 2014.PubMedCrossRefGoogle Scholar
  26. 26.
    Dual, S. A., G. Ochsner, A. Petrou, R. Amacher, M. J. Wilhelm, M. Meboldt, and M. Schmid Daners. R-wave magnitude: a control input for ventricular assist devices. In: Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI 2016), 2016, pp. 18–21.Google Scholar
  27. 27.
    Esmore, D., P. Spratt, R. Larbalestier, S. Tsui, A. Fiane, P. Ruygrok, D. Meyers, and J. Woodard. VentrAssist left ventricular assist device: clinical trial results and clinical development plan update. Eur. J. Cardio-Thorac. Surg. 32:735–744, 2007.CrossRefGoogle Scholar
  28. 28.
    Farrar, D. J., P. G. Compton, J. H. Lawson, J. J. Hershon, and J. D. Hill. Control modes of a clinical ventricular assist device. IEEE Eng. Med. Biol. 5(1):19–25, 1986.CrossRefGoogle Scholar
  29. 29.
    Franco, D., F. Milde, M. Klingauf, F. Orsenigo, E. Dejana, D. Poulikakos, M. Cecchini, P. Koumoutsakos, A. Ferrari, and V. Kurtcuoglu. Accelerated endothelial wound healing on microstructured substrates under flow. Biomaterials 34:1488–1497, 2013.PubMedCrossRefGoogle Scholar
  30. 30.
    Fraser, Jr, C. D., R. D. Jaquiss, D. N. Rosenthal, T. Humpl, C. E. Canter, E. H. Blackstone, D. C. Naftel, R. N. Ichord, L. Bomgaars, J. S. Tweddell, et al. Prospective trial of a pediatric ventricular assist device. N. Engl. J. Med. 367:532–541, 2012.PubMedCrossRefGoogle Scholar
  31. 31.
    Fujisawa, N., L. A. Poole-Warren, J. C. Woodard, C. D. Bertram, and K. Schindhelm. A novel textured surface for blood-contact. Biomaterials 20:955–962, 1999.PubMedCrossRefGoogle Scholar
  32. 32.
    Gazzoli, F., A. Alloni, F. Pagani, C. Pellegrini, A. Longobardi, D. Ricci, M. Rinaldi, and M. Viganò. Arrow coraide left ventricular assist system: Initial experience of the cardio-thoracic surgery center in Pavia. Ann. Thorac. Surg. 83:279–282, 2007.PubMedCrossRefGoogle Scholar
  33. 33.
    Gibber, M., Z. J. Wu, W.-B. Chang, G. Bianchi, J. Hu, J. Garcia, R. Jarvik, and B. P. Griffith. In vivo experience of the child-size pediatric Jarvik 2000 heart: update. ASAIO J. 56:369–376, 2010.PubMedGoogle Scholar
  34. 34.
    Giridharan, G. A., T. J. Lee, M. Ising, M. A. Sobieski, S. C. Koenig, L. A. Gray, and M. S. Slaughter. Miniaturization of mechanical circulatory support systems. Artif. Organs 36:731–758, 2012.PubMedCrossRefGoogle Scholar
  35. 35.
    Gregory, S. D., M. C. Stevens, J. P. Pauls, E. Schummy, S. Diab, B. Thomson, B. Anderson, G. Tansley, R. Salamonsen, J. F. Fraser, et al. In vivo evaluation of active and passive physiological control systems for rotary left and right ventricular assist devices. Artif Organs. 40:894–903, 2016.PubMedCrossRefGoogle Scholar
  36. 36.
    Healy, A. H., S. H. McKellar, S. G. Drakos, A. Koliopoulou, J. Stehlik, and C. H. Selzman. Physiologic effects of continuous-flow left ventricular assist devices. J. Surg. Res. 202:363–371, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hetzer, R., E. Hennig, A. Schiessler, N. Friedel, H. Warnecke, and M. Adt. Mechanical circulatory support and heart transplantation. J. Heart Lung Transpl. 11:S175–S181, 1991.Google Scholar
  38. 38.
    Hetzer, R., T. Krabatsch, A. Stepanenko, E. Hennig, and E. V. Potapov. Long-term biventricular support with the heartware implantable continuous flow pump. J. Heart Lung Transpl. 29:822–824, 2010.CrossRefGoogle Scholar
  39. 39.
    Hetzer, R., F. Kaufmann, E. Potapov, T. Krabatsch, and E. M. D. Walter. Rotary blood pumps as long-term mechanical circulatory support: a review of a 15-Year Berlin experience. In: Seminars in Thoracic and Cardiovascular Surgery, Elsevier, 2016.Google Scholar
  40. 40.
    Hetzer, R., V. Alexi-Meskishvili, Y. Weng, M. Hübler, E. Potapov, T. Drews, E. Hennig, F. Kaufmann, and B. Stiller. Mechanical cardiac support in the young with the Berlin Heart EXCOR pulsatile ventricular assist device: 15 years’ experience. In: Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual, Elsevier, vol. 9, 2006, pp. 99–108.Google Scholar
  41. 41.
    Hetzer, R., Y. Weng, E. V. Potapov, M. Pasic, T. Drews, M. Jurmann, E. Hennig, and J. Müller. First experiences with a novel magnetically suspended axial flow left ventricular assist device. Eur. J. Cardiothorac. Surg. 25:964–970, 2004.PubMedCrossRefGoogle Scholar
  42. 42.
    Hirohashi, Y., A. Tanaka, M. Yoshizawa, N. Sugita, M. Abe, T. Kato, Y. Shiraishi, H. Miura, and T. Yambe. Sensorless cardiac phase detection for synchronized control of ventricular assist devices using nonlinear kernel regression model. J. Artif. Organs 19:114–120, 2016.PubMedCrossRefGoogle Scholar
  43. 43.
    Holtz, J., and J. Teuteberg. Management of aortic insufficiency in the continuous flow left ventricular assist device population. Curr. Heart Fail. Rep. 11:103–110, 2014.PubMedCrossRefGoogle Scholar
  44. 44.
    Hoshi, H., T. Shinshi, and S. Takatani. Third-generation blood pumps with mechanical noncontact magnetic bearings. Artif. Organs 30(5):324–338, 2006.PubMedCrossRefGoogle Scholar
  45. 45.
  46. 46.
  47. 47.
    Hui, S. Y. R., W. Zhong, and C. K. Lee. A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29:4500–4511, 2014.CrossRefGoogle Scholar
  48. 48.
    Inci, G., and E. Sorgüven. Effect of lvad outlet graft anastomosis angle on the aortic valve, wall, and flow. ASAIO J. 58:373–381, 2012.PubMedCrossRefGoogle Scholar
  49. 49.
    Jansen-Park, S.-H., S. Spiliopoulos, H. Deng, N. Greatrex, U. Steinseifer, D. Guersoy, R. Koerfer, and G. Tenderich. A monitoring and physiological control system for determining aortic valve closing with a ventricular assist device. Eur. J. Cardio-Thorac. Surg. 46:356–360, 2014.CrossRefGoogle Scholar
  50. 50.
    John, R., S. Lee, P. Eckman, and K. Liao. Right ventricular failure—a continuing problem in patients with left ventricular assist device support. J. Cardiovasc. Transl. Res. 3:604–611, 2010.PubMedCrossRefGoogle Scholar
  51. 51.
    John, R., K. Mantz, P. Eckman, A. Rose, and K. May-Newman. Aortic valve pathophysiology during left ventricular assist device support. J. Heart Lung Transpl. 29:1321–1329, 2010.CrossRefGoogle Scholar
  52. 52.
    Kar, B., R. M. Delgado, III, O. Frazier, I. D. Gregoric, M. T. Harting, Y. Wadia, T. J. Myers, R. D. Moser, and J. Freund. The effect of LVAD aortic outflow-graft placement on hemodynamics and flow. Tex. Heart Inst. J. 32:294–298, 2005.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kaufmann, F., and T. Krabatsch. Using medical imaging for the detection of adverse events (“incidents”) during the utilization of left ventricular assist devices in adult patients with advanced heart failure. Expert Rev Med Devices. 13:463–474, 2016.PubMedCrossRefGoogle Scholar
  54. 54.
    Kim, N. J., C. Diao, K. H. Ahn, S. J. Lee, M. V. Kameneva, and J. F. Antaki. Parametric study of blade tip clearance, flow rate, and impeller speed on blood damage in rotary blood pump. Artif. Organs 33:468–474, 2009.PubMedCrossRefGoogle Scholar
  55. 55.
    Kirklin, J. K., R. Cantor, P. Mohacsi, J. Gummert, T. De By, M. M. Hannan, R. L. Kormos, S. Schueler, L. H. Lund, T. Nakatani, et al. First annual IMACS report: a global ISHLT registry for mechanical circulatory support. J. Heart Lung Transpl. 35:407–412, 2016.CrossRefGoogle Scholar
  56. 56.
    Kirklin, J. K., D. C. Naftel, R. L. Kormos, F. D. Pagani, S. L. Myers, L. W. Stevenson, M. A. Acker, D. L. Goldstein, S. C. Silvestry, C. A. Milano, et al. Interagency registry for mechanically assisted circulatory support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J. Heart Lung Transpl. 33:12–22, 2014.CrossRefGoogle Scholar
  57. 57.
    Kirklin, J. K., D. C. Naftel, R. L. Kormos, L. W. Stevenson, F. D. Pagani, M. A. Miller, J. T. Baldwin, and J. B. Young. Fifth INTERMACS annual report: Risk factor analysis from more than 6,000 mechanical circulatory support patients. J. Heart Lung Transpl. 32:141–156, 2013.CrossRefGoogle Scholar
  58. 58.
    Kirklin, J. K., D. C. Naftel, F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, M. A. Miller, J. T. Baldwin, and J. B. Young. Sixth INTERMACS annual report: a 10,000 patient database. J. Heart Lung Transpl. 33:555–564, 2014.CrossRefGoogle Scholar
  59. 59.
    Kirklin, J. K., D. C. Naftel, F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, S. L. Myers, M. A. Miller, J. T. Baldwin, and J. B. Young. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transpl. 34:1495–1504, 2015.CrossRefGoogle Scholar
  60. 60.
    Klotz, S., M. C. Deng, J. Stypmann, J. Roetker, M. J. Wilhelm, D. Hammel, H. H. Scheld, and C. Schmid. Left ventricular pressure and volume unloading during pulsatile versus nonpulsatile left ventricular assist device support. Ann. Thorac. Surg. 77:143–150, 2004.PubMedCrossRefGoogle Scholar
  61. 61.
    Knecht, O., R. Bosshard, and J. Kolar. High efficiency transcutaneous energy transfer for implantable mechanical heart support systems. IEEE Trans. Power Electron. 30:6221–6236, 2015.CrossRefGoogle Scholar
  62. 62.
    Krabatsch, T., M. Schweiger, M. Dandel, A. Stepanenko, T. Drews, E. Potapov, M. Pasic, Y.-G. Weng, M. Huebler, and R. Hetzer. Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems? Ann. Thorac. Surg. 91:1335–1340, 2011.PubMedCrossRefGoogle Scholar
  63. 63.
    Kwan-Gett, C. S., M. J. Crosby, A. Schoenberg, S. C. Jacobsen, and W. J. Kolff. Control systems for artificial hearts. Trans. Am. Soc. Artif. Intern. Organs 14:284–290, 1968.PubMedGoogle Scholar
  64. 64.
    LaRose, J. A., D. Tamez, M. Ashenuga, and C. Reyes. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J. 56:285–289, 2010.PubMedGoogle Scholar
  65. 65.
    Laumen, M., T. Kaufmann, D. Timms, P. Schlanstein, S. Jansen, S. Gregory, K. C. Wong, T. Schmitz-Rode, and U. Steinseifer. Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch. Artif. Organs 34(10):798–806, 2010.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee, J., T. J. Billich, D. H. LaForge, M. Ryan, B. Sohrab, J. S. Jassawalla, and P. M. Portner. Control electronics for the Novacor totally implantable left ventricular assist system. In: Engineering in Medicine and Biology Society, 1988. Proceedings of the Annual International Conference of the IEEE, pp. 72–73, 1988.Google Scholar
  67. 67.
    Lima, B., M. Mack, and G. V. Gonzalez-Stawinski. Ventricular assist devices: the future is now. Trends Cardiovasc. Med. 25:360–369, 2015.PubMedCrossRefGoogle Scholar
  68. 68.
    LionHeart™ LVD2000 Clinician’s Manual, Arrow Intl., P/N: LV-L2000-001 (rev. S0_070200), pp. 2-2 and 3-2.Google Scholar
  69. 69.
    Loh, J. P., I. M. Barbash, and R. Waksman. Overview of the 2011 food and drug administration circulatory system devices panel of the medical devices advisory committee meeting on the cardiomems champion heart failure monitoring system. J. Am. Coll. Cardiol. 61:1571–1576, 2013.PubMedCrossRefGoogle Scholar
  70. 70.
    Long, C. C., A. L. Marsden, and Y. Bazilevs. Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput. Mech. 52:971–981, 2013.CrossRefGoogle Scholar
  71. 71.
    Long, C. C., A. L. Marsden, and Y. Bazilevs. Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput. Mech. 54:921–932, 2014.CrossRefGoogle Scholar
  72. 72.
    McCarthy, P. M. Heartmate implantable left ventricular assist device: bridge to transplantation and future applications. Ann. Thorac. Surg. 59:S46–S51, 1995.PubMedCrossRefGoogle Scholar
  73. 73.
    Mehta, S. M., W. E. Pae, G. Rosenberg, A. J. Snyder, W. J. Weiss, J. P. Lewis, D. J. Frank, J. J. Thompson, and W. S. Pierce. The LionHeart LVD-2000: a completely implanted left ventricular assist device for chronic circulatory support. Ann. Thorac. Surg. 71:S156–S161, 2001.PubMedCrossRefGoogle Scholar
  74. 74.
    Meineri, M., A. E. Van Rensburg, and A. Vegas. Right ventricular failure after LVAD implantation: prevention and treatment. Best Pract. Res. Clin. Anaesthesiol. 26:217–229, 2012.PubMedCrossRefGoogle Scholar
  75. 75.
    Moazami, N., W. P. Dembitsky, R. Adamson, R. J. Steffen, E. G. Soltesz, R. C. Starling, and K. Fukamachi. Does pulsatility matter in the era of continuous-flow blood pumps? J. Heart Lung Transpl. 34:999–1004, 2015.CrossRefGoogle Scholar
  76. 76.
    Moazami, N., K. Fukamachi, M. Kobayashi, N. G. Smedira, K. J. Hoercher, A. Massiello, S. Lee, D. J. Horvath, and R. C. Starling. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J. Heart Lung Transpl. 32:1–11, 2013.CrossRefGoogle Scholar
  77. 77.
    Molina, E. J., and S. W. Boyce. Current status of left ventricular assist device technology. Semin. Thorac. Cardiovasc. Surg. 25:56–63, 2013.PubMedCrossRefGoogle Scholar
  78. 78.
    Najjar, S. S., M. S. Slaughter, F. D. Pagani, R. C. Starling, E. C. McGee, P. Eckman, A. J. Tatooles, N. Moazami, R. L. Kormos, D. R. Hathaway, et al. An analysis of pump thrombus events in patients in the heartware advance bridge to transplant and continued access protocol trial. J. Heart Lung Transpl. 33:23–34, 2014.CrossRefGoogle Scholar
  79. 79.
    Netuka, I., Y. Pya, D. Zimpfer, T. Krabatsch, J. Garbade, V. Rao, M. Morshuis, S. Marasco, F. Beyersdorf, P. Sood, et al. HeartMate III, fully magnetically levitated left ventricular assist device for the treatment of advanced heart failure—results from the CE mark trial. J. Cardiac Fail. 21:936, 2015.CrossRefGoogle Scholar
  80. 80.
    Noviani, M., R. M. Jamiolkowski, J. E. Grenet, Q. Lin, T. A. Carlon, L. Qi, A. E. Jantzen, C. A. Milano, G. A. Truskey, and H. E. Achneck. Point-of-care rapid seeding ventricular assist device with blood-derived endothelial cells to create a living antithrombotic coating. ASAIO J. 62:447–453, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ochsner, G., R. Amacher, A. Amstutz, A. Plass, M. Schmid Daners, H. Tevaearai, S. Vandenberghe, M. J. Wilhelm, and L. Guzzella. A novel interface for hybrid mock circulations to evaluate ventricular assist devices. IEEE Trans. Biomed. Eng. 60:507–516, 2013.PubMedCrossRefGoogle Scholar
  82. 82.
    Ochsner, G., R. Amacher, M. J. Wilhelm, S. Vandenberghe, H. Tevaearai, A. Plass, A. Amstutz, V. Falk, and M. Schmid Daners. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume. Artif. Organs 38:527–583, 2014.PubMedCrossRefGoogle Scholar
  83. 83.
    Ochsner, G., M. J. Wilhelm, R. Amacher, A. Petrou, N. Cesarovic, B. Röhrnbauer, M. Meboldt, and M. Schmid Daners. In vivo evaluation of physiological control algorithms for LVADs based on left ventricular volume or pressure. ASAIO J 2017. doi: 10.1097/MAT.0000000000000533.PubMedGoogle Scholar
  84. 84.
    Ong, C., S. Dokos, B. Chan, E. Lim, A. Al Abed, N. Osman, S. Kadiman, and N. H. Lovell. Numerical investigation of the effect of cannula placement on thrombosis. Theor. Biol. Med. Modell. 10:35, 2013.CrossRefGoogle Scholar
  85. 85.
    Pae, W. E., J. M. Connell, A. Adelowo, J. P. Boehmer, R. Korfer, A. El-Banayosy, R. Hetzer, M. Vigano, and A. Pavie. Does total implantability reduce infection with the use of a left ventricular assist device? The LionHeart experience in Europe. J. Heart Lung Transpl. 26:219–229, 2007.CrossRefGoogle Scholar
  86. 86.
    Park, Y. H. Current mechanical circulatory support devices for end stage heart failure. Korean Circ. J. 39:1–10, 2009.CrossRefGoogle Scholar
  87. 87.
    Patel, S. R., and U. P. Jorde. Creating adequate pulsatility with a continuous flow left ventricular assist device: just do it! Curr. Opin. Cardiol. 31:329–336, 2016.PubMedCrossRefGoogle Scholar
  88. 88.
    Patel, N. D., E. S. Weiss, J. Schaffer, S. L. Ullrich, D. C. Rivard, A. S. Shah, S. D. Russell, and J. V. Conte. Right heart dysfunction after left ventricular assist device implantation: a comparison of the pulsatile HeartMate I and axial-flow HeartMate II devices. Ann. Thorac. Surg. 86:832–840, 2008.PubMedCrossRefGoogle Scholar
  89. 89.
    Pereda, D., and J. V. Conte. Left ventricular assist device driveline infections. Cardiol. Clin. 29:515–527, 2011.PubMedCrossRefGoogle Scholar
  90. 90.
    Petrou, A., G. Ochsner, R. Amacher, P. Pergantis, M. Rebholz, M. Meboldt, and M. Schmid Daners. A physiological controller for turbodynamic ventricular assist devices based on systolic left ventricular pressure. Artif. Organs 40:842–855, 2016.PubMedCrossRefGoogle Scholar
  91. 91.
    Pitsis, A. A., A. N. Visouli, V. Vassilikos, V. N. Ninios, P. D. Sfirakis, N. E. Mezilis, P. S. Dardas, G. S. Filippatos, G. I. Bougioukas, D. T. Kremastinos, and J. W. Long. First human implantation of a new rotary blood pump: design of the clclinic feasibility study. Hell. J. Cardiol. 47:368–376, 2006.Google Scholar
  92. 92.
    Portner, P. M., P. E. Oyer, D. G. Pennington, W. A. Baumgartner, B. P. Griffith, W. R. Frist, D. J. Magilligan, G. P. Noon, N. Ramasamy, P. J. Miller, et al. Implantable electrical left ventricular assist systems: bridge to transplantation and future. Ann. Thorac. Surg. 47:142–150, 1989.PubMedCrossRefGoogle Scholar
  93. 93.
    Potthoff, E., D. Franco, V. D’Alessandro, C. Starck, V. Falk, T. Zambelli, J. A. Vorholt, D. Poulikakos, and A. Ferrari. Toward a rational design of surface textures promoting endothelialization. Nano Lett. 14:1069–1079, 2014.PubMedCrossRefGoogle Scholar
  94. 94.
    Prisco, A. R., A. Aliseda, J. A. Beckman, N. A. Mokadam, C. Mahr, and G. J. Garcia. Impact of LVAD implantation site on ventricular blood stagnation. ASAIO J 2017. doi: 10.1097/MAT.0000000000000503.Google Scholar
  95. 95.
    Rebholz, M., R. Amacher, A. Petrou, M. Meboldt, and M. Schmid Daners. High-frequency operation of a pulsatile VAD—a simulation study. Biomed. Tech. 62:161–170, 2017.CrossRefGoogle Scholar
  96. 96.
    Robotti, F., D. Franco, L. Bänninger, J. Wyler, C. T. Starck, V. Falk, D. Poulikakos, and A. Ferrari. The influence of surface micro-structure on endothelialization under supraphysiological wall shear stress. Biomaterials 35:8479–8486, 2014.PubMedCrossRefGoogle Scholar
  97. 97.
    Rose, E. A., A. C. Gelijns, A. J. Moskowitz, D. F. Heitjan, L. W. Stevenson, W. Dembitsky, J. W. Long, D. D. Ascheim, A. R. Tierney, R. G. Levitan, J. T. Watson, and P. Meier. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345:1435–1443, 2001.PubMedCrossRefGoogle Scholar
  98. 98.
    Rose, E. A., H. R. Levin, M. C. Oz, O. H. Frazier, Q. Macmanus, N. A. Burton, and E. A. Lefrak. Artificial circulatory support with textured interior surfaces. A counterintuitive approach to minimizing thromboembolism. Circulation 90:87–91, 1994.CrossRefGoogle Scholar
  99. 99.
    Saito, S., K. Yamazaki, T. Nishinaka, Y. Ichihara, M. Ono, S. Kyo, T. Nishimura, T. Nakatani, K. Toda, Y. Sawa, et al. Post-approval study of a highly pulsed, low-shear-rate, continuous-flow, left ventricular assist device, EVAHEART: a Japanese multicenter study using J-MACS. J. Heart Lung Transpl. 33:599–608, 2014.CrossRefGoogle Scholar
  100. 100.
    Salamonsen, R. F., E. Lim, J. Moloney, N. H. Lovell, and F. L. Rosenfeldt. Anatomy and physiology of left ventricular suction induced by rotary blood pumps. Artif. Organs 39:681–690, 2015.PubMedCrossRefGoogle Scholar
  101. 101.
    Schima, H., K. Dimitrov, and D. Zimpfer. Debate: creating adequate pulse with a continuous flow ventricular assist device: can it be done and should it be done? Probably not, it may cause more problems than benefits!. Curr. Opin. Cardiol. 31:337–342, 2016.PubMedCrossRefGoogle Scholar
  102. 102.
    Schima, H., M. Vollkron, U. Jantsch, R. Crevenna, W. Roethy, R. Benkowski, G. Morello, M. Quittan, M. Hiesmayr, and G. Wieselthaler. First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization. J. Heart Lung Transpl. 25:167–173, 2006.CrossRefGoogle Scholar
  103. 103.
    Schmid, C., M. Jurmann, D. Birnbaum, T. Colombo, V. Falk, G. Feltrin, A. Garatti, M. Genoni, G. Gerosa, P. Göttel, et al. Influence of inflow cannula length in axial-flow pumps on neurologic adverse event rate: results from a multi-center analysis. J. Heart Lung Transpl. 27:253–260, 2008.CrossRefGoogle Scholar
  104. 104.
    Schumer, E. M., M. S. Ising, J. R. Trivedi, M. S. Slaughter, and A. Cheng. Early outcomes with marginal donor hearts compared with left ventricular assist device support in patients with advanced heart failure. Ann. Thorac. Surg. 100:522–527, 2015.PubMedCrossRefGoogle Scholar
  105. 105.
    Selishchev, S., and D. Telyshev. Ventricular assist device Sputnik: description, technical features and characteristics. Trend Biomater. Artif. Organs 29:207, 2015.Google Scholar
  106. 106.
    Shu, F., S. Vandenberghe, J. Brackett, and J. F. Antaki. Classification of unsteady flow patterns in a rotodynamic blood pump: Introduction of non-dimensional regime map. Cardiovasc. Eng. Technol. 6:230–241, 2015.PubMedCrossRefGoogle Scholar
  107. 107.
    Sin, D.-C., H.-L. Kei, and X. Miao. Surface coatings for ventricular assist devices. Expert Rev. Med. Devices 6:51–60, 2009.PubMedCrossRefGoogle Scholar
  108. 108.
    Slaughter, M. S. Long-term continuous flow left ventricular assist device support end end-organ function: prospects for destination therapy. J. Card. Surg. 25:490–494, 2010.PubMedCrossRefGoogle Scholar
  109. 109.
    Slaughter, M. S., M. A. Sobieski, S. C. Koenig, P. S. Pappas, A. J. Tatooles, and M. A. Silver. Left ventricular assist device weaning: hemodynamic response and relationship to stroke volume and rate reduction protocols. ASAIO J. 52:228–233, 2006.PubMedCrossRefGoogle Scholar
  110. 110.
    Sonntag, S. J., T. Kaufmann, M. R. Büsen, M. Laumen, F. Gräf, T. Linde, and U. Steinseifer. Numerical washout study of a pulsatile total artificial heart. Int. J. Artif. Organs 37:241–252, 2014.PubMedCrossRefGoogle Scholar
  111. 111.
    Starling, R. C., N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira. Unexpected abrupt increase in left ventricular assist device thrombosis. N. Engl. J. Med. 370:33–40, 2014.PubMedCrossRefGoogle Scholar
  112. 112.
    Staufert, S., and C. Hierold. Novel sensor integration approach for blood pressure sensing in ventricular assist devices. Proc. Eng. 168:71–75, 2016.CrossRefGoogle Scholar
  113. 113.
    Stefopoulos, G., F. Robotti, V. Falk, D. Poulikakos, and A. Ferrari. Endothelialization of rationally microtextured surfaces with minimal cell seeding under flow. Small 12:4113–4126, 2016.PubMedCrossRefGoogle Scholar
  114. 114.
    Stepanenko, A., and F. Kaufmann. A novel total artificial heart: search for haemocompatibility. Lancet 386:1517–1519, 2015.PubMedCrossRefGoogle Scholar
  115. 115.
    Stepanenko, A., T. Krabatsch, E. Hennig, F. Kaufmann, B. Jurmann, N. Dranishnikov, H. B. Lehmkuhl, M. Pasic, Y. Weng, R. Hetzer, et al. Retrospective hemolysis comparison between patients with centrifugal biventricular assist and left ventricular assist devices. ASAIO J. 57:382–387, 2011.PubMedCrossRefGoogle Scholar
  116. 116.
    Stewart, G. C., and M. R. Mehra. A history of devices as an alternative to heart transplantation. Heart Fail. Clin. 10:S1–S12, 2014.PubMedCrossRefGoogle Scholar
  117. 117.
    Stulak, J. M., M. E. Davis, N. Haglund, S. Dunlay, J. Cowger, P. Shah, F. D. Pagani, K. D. Aaronson, and S. Maltais. Adverse events in contemporary continuous-flow left ventricular assist devices: a multi-institutional comparison shows significant differences. J. Thorac. Cardiovasc. Surg. 151:177–189, 2016.PubMedCrossRefGoogle Scholar
  118. 118.
    Tchantchaleishvili, V., J. G. Y. Luc, C. M. Cohan, K. Phan, L. Hübbert, S. W. Day, and H. T. Massey. Clinical implications of physiological flow adjustment in continuous-flow left ventricular assist devices. ASAIO J. 63:241–250, 2016.CrossRefGoogle Scholar
  119. 119.
    Thamsen, B., B. Blümel, J. Schaller, C. O. Paschereit, K. Affeld, L. Goubergrits, and U. Kertzscher. Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps. Artif. Organs 39:651–659, 2015.PubMedCrossRefGoogle Scholar
  120. 120.
    Timms, D. A review of clinical ventricular assist devices. Med. Eng. Phys. 33:1041–1047, 2011.PubMedCrossRefGoogle Scholar
  121. 121.
    Waters, B. H., A. P. Sample, P. Bonde, and J. R. Smith. Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system. Proc. IEEE 100:138–149, 2012.CrossRefGoogle Scholar
  122. 122.
    Wheeldon, D. R., D. H. LaForge, J. Lee, P. G. Jansen, J. S. Jassawalla, and P. M. Portner. Novacor left ventricular assist system long-term performance: comparison of clinical experience with demonstrated in vitro reliability. ASAIO J. 48:546–551, 2002.PubMedCrossRefGoogle Scholar
  123. 123.
  124. 124.
  125. 125.
  126. 126.
    Yamane, T. The present and future state of nonpulsatile artificial heart technology. J. Artif. Organs 5:0149–0155, 2002.CrossRefGoogle Scholar
  127. 127.
    Yang, F., R. L. Kormos, and J. F. Antaki. High-speed visualization of disturbed pathlines in axial flow ventricular assist device under pulsatile conditions. J. Thorac. Cardiovasc. Surg. 150:938–944, 2015.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Marianne Schmid Daners
    • 1
  • Friedrich Kaufmann
    • 2
  • Raffael Amacher
    • 3
  • Gregor Ochsner
    • 1
    • 4
  • Markus J. Wilhelm
    • 5
  • Aldo Ferrari
    • 6
  • Edoardo Mazza
    • 7
    • 8
  • Dimos Poulikakos
    • 6
  • Mirko Meboldt
    • 1
  • Volkmar Falk
    • 2
  1. 1.Product Development Group Zurich, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland
  2. 2.German Heart Center BerlinBerlinGermany
  3. 3.Wyss ZurichETH Zurich and University of ZurichZurichSwitzerland
  4. 4.Institute for Dynamic Systems and Control, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland
  5. 5.Department of Cardiovascular SurgeryUniversity Hospital Zurich and University of ZurichZurichSwitzerland
  6. 6.Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland
  7. 7.Institute for Mechanical Systems, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland
  8. 8.Swiss Federal Laboratories for Materials Science and Technology, EMPADübendorfSwitzerland

Personalised recommendations