Annals of Biomedical Engineering

, Volume 45, Issue 9, pp 2222–2233 | Cite as

An Intracardiac Soft Robotic Device for Augmentation of Blood Ejection from the Failing Right Ventricle

  • Markus A. Horvath
  • Isaac Wamala
  • Eric Rytkin
  • Elizabeth Doyle
  • Christopher J. Payne
  • Thomas Thalhofer
  • Ignacio Berra
  • Anna Solovyeva
  • Mossab Saeed
  • Sara Hendren
  • Ellen T. Roche
  • Pedro J. del Nido
  • Conor J. Walsh
  • Nikolay V. Vasilyev
Article

Abstract

We introduce an implantable intracardiac soft robotic right ventricular ejection device (RVED) for dynamic approximation of the right ventricular (RV) free wall and the interventricular septum (IVS) in synchrony with the cardiac cycle to augment blood ejection in right heart failure (RHF). The RVED is designed for safe and effective intracardiac operation and consists of an anchoring system deployed across the IVS, an RV free wall anchor, and a pneumatic artificial muscle linear actuator that spans the RV chamber between the two anchors. Using a ventricular simulator and a custom controller, we characterized ventricular volume ejection, linear approximation against different loads and the effect of varying device actuation periods on volume ejection. The RVED was then tested in vivo in adult pigs (n = 5). First, we successfully deployed the device into the beating heart under 3D echocardiography guidance (n = 4). Next, we performed a feasibility study to evaluate the device’s ability to augment RV ejection in an experimental model of RHF (n = 1). RVED actuation augmented RV ejection during RHF; while further chronic animal studies will provide details about the efficacy of this support device. These results demonstrate successful design and implementation of the RVED and its deployment into the beating heart. This soft robotic ejection device has potential to serve as a rapidly deployable system for mechanical circulatory assistance in RHF.

Keywords

Right heart failure Soft robotics Mechanical circulatory support 

Notes

Acknowledgments

This work was supported in part by the NIH/NHLBI NCAI Boston Biomedical Innovation Center Pilot Grant (NVV), the DoD CDMRP Discovery Award W81XWH-15-1-0248 (NVV), the Wyss Institute for Biologically Inspired Engineering and the Harvard Paulson School of Engineering and Applied Sciences.

Supplementary material

Supplementary material 1 (MP4 5063 kb)

References

  1. 1.
    Anderson, M. B., J. Goldstein, C. Milano, L. D. Morris, R. L. Kormos, J. Bhama, N. K. Kapur, A. Bansal, J. Garcia, J. N. Baker, S. Silvestry, W. L. Holman, P. S. Douglas, and W. O’Neill. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J. Heart Lung Transplant. 34:1549–1560, 2015.CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson, M. B., and M. O’Brien. Use of the impella 2.5 microaxial pump for right ventricular support after insertion of heartmate II left ventricular assist device. Ann. Thorac. Surg. 95:e109–e110, 2013.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson, R. H., J. Yanni, M. R. Boyett, N. J. Chandler, and H. Dobrzynski. The anatomy of the cardiac conduction system. Clin. Anat. 22:99–113, 2009.CrossRefPubMedGoogle Scholar
  4. 4.
    Auger, D. A., X. Zhong, and F. H. Epstein. Mapping right ventricular myocardial mechanics using 3D cine DENSE cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 14:1, 2012.CrossRefGoogle Scholar
  5. 5.
    Bramos, D., N. Tsirikos, G. Kottis, C. Pamboucas, V. Kostopoulou, C. Trika, I. Ikonomidis, and S. Toumanidis. The acute effect of an echo-contrast agent on right ventricular dimensions and contractility in pigs. J. Cardiovasc. Pharmacol. 51:86–91, 2008.CrossRefPubMedGoogle Scholar
  6. 6.
    Buckberg, G. D., and Restore Group. The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration. Eur. J. Cardio-Thorac. Surg. 29:S272–S278, 2006.CrossRefGoogle Scholar
  7. 7.
    Chou, C. P., and B. Hannaford. Static and dynamic characteristics of McKibben pneumatic artificial muscles. IEEE. Int. Conf. Robot. Autom. 1:281–286, 1994.Google Scholar
  8. 8.
    Chou, C. P., and B. Hannaford. Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12:90–102, 1996.CrossRefGoogle Scholar
  9. 9.
    Geva, T., A. J. Powell, E. C. Crawford, T. Chung, and S. D. Colan. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circulation 98:339–345, 1998.CrossRefPubMedGoogle Scholar
  10. 10.
    Haddad, F., R. Doyle, D. J. Murphy, and S. A. Hunt. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117:1717–1731, 2008.CrossRefPubMedGoogle Scholar
  11. 11.
    Hsu, D. T., and G. D. Pearson. Heart failure in children part I: history, etiology, and pathophysiology. Circ Heart Fail. 2:63–70, 2009.CrossRefPubMedGoogle Scholar
  12. 12.
    Hsu, P., J. Parker, C. Egger, R. Autschbach, T. Schmitz-Rode, and U. Steinseifer. Mechanical circulatory support for right heart failure: current technology and future outlook. Artif. Organs 36:332–347, 2012.CrossRefPubMedGoogle Scholar
  13. 13.
    James, T. N., and G. E. Burch. Blood supply of the human interventricular septum. Circulation 17:391–396, 1958.CrossRefPubMedGoogle Scholar
  14. 14.
    Lai, W. W., K. Gauvreau, E. S. Rivera, and S. Saleeb. Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. Int. J. Cardiovasc. Imaging 24:691–698, 2008.CrossRefPubMedGoogle Scholar
  15. 15.
    Larose, E., P. Ganz, H. G. Reynolds, S. Dorbala, M. F. Di Carli, K. A. Brown, and R. Y. Kwong. Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J. Am. Coll. Cardiol. 49:855–862, 2007.CrossRefPubMedGoogle Scholar
  16. 16.
    Leclair J., M. Doumit, and G. McAllister. Analytical stiffness modeling and experimental validation for a pneumatic artificial muscle. ASME, 2014.Google Scholar
  17. 17.
    Markel, T. A., G. M. Wairiuko, T. Lahm, P. R. Crisostomo, M. Wang, C. M. Herring, and D. R. Meldrum. The right heart and its distinct mechanisms of development, function, and failure. J. Surg. Res. 146:304–313, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    Meyer, P., G. S. Filippatos, M. I. Ahmed, A. E. Iskandrian, V. Bittner, G. J. Perry, M. White, I. B. Aban, M. Mujib, L. J. Dell’Italia, and A. Ahmed. Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation 121:252–258, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Obiajulu S. C., and E. T. Roche. Soft pneumatic artificial muscles with low threshold pressures for a cardiac compression device. ASME, 2013.Google Scholar
  20. 20.
    Park, E., N. Mehandru, and T. L. Beltran. An intraventricular soft robotic pulsatile assist device for right ventricular heart failure. J. Med. Dev. 8:020908, 2014.CrossRefGoogle Scholar
  21. 21.
    Roche E. T., and M. A. Horvath. Design and fabrication of a soft robotic direct cardiac compression device. ASME, 2015.Google Scholar
  22. 22.
    Roche, E. T., M. A. Horvath, I. Wamala, A. Alazmani, S.-E. Song, W. Whyte, Z. Machaidze, C. J. Payne, J. C. Weaver, G. Fishbein, J. Kuebler, N. V. Vasilyev, D. J. Mooney, F. A. Pigula, and C. J. Walsh. Soft robotic sleeve supports heart function. Sci. Transl. Med. 9:3925, 2017.CrossRefGoogle Scholar
  23. 23.
    Roche, E. T., R. Wohlfarth, J. T. B. Overvelde, N. V. Vasilyev, F. A. Pigula, D. J. Mooney, K. Bertoldi, and C. J. Walsh. A bioinspired soft actuated material. Adv. Mater. 26:1200–1206, 2014.CrossRefPubMedGoogle Scholar
  24. 24.
    Stone, G. W., E. M. Ohman, and M. F. Miller. Contemporary utilization and outcomes of intra-aortic balloon counterpulsation in acute myocardial infarction: the benchmark registry. J. Am. Coll. Cardiol. 41:1940–1945, 2003.CrossRefPubMedGoogle Scholar
  25. 25.
    Vasilyev, N. V., J. F. Martinez, and F. P. Freudenthal. Three-dimensional echo and videocardioscopy-guided atrial septal defect closure. Ann. Thorac. Surg. 82:1322–1326, 2006.CrossRefPubMedGoogle Scholar
  26. 26.
    van de Veerdonk, M. C., T. Kind, J. T. Marcus, G.-J. Mauritz, M. W. Heymans, H.-J. Bogaard, A. Boonstra, K. M. J. Marques, N. Westerhof, and A. Vonk-Noordegraaf. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J. Am. Coll. Cardiol. 58:2511–2519, 2011.CrossRefPubMedGoogle Scholar
  27. 27.
    Voelkel N. F., R. A. Quaife, L. A. Leinwand, R. J. Barst, M. D. McGoon, D. R. Meldrum, J. Dupuis, C. S. Long, L. J. Rubin, F. W. Smart, Y. J. Suzuki, M. Gladwin, E. M. Denholm, D. B. Gail, and L. National heart and blood institute working group on cellular and molecular mechanisms of right heart failure. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure, 2006.Google Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Markus A. Horvath
    • 1
    • 2
    • 4
  • Isaac Wamala
    • 2
  • Eric Rytkin
    • 2
  • Elizabeth Doyle
    • 3
  • Christopher J. Payne
    • 1
    • 4
  • Thomas Thalhofer
    • 1
  • Ignacio Berra
    • 2
  • Anna Solovyeva
    • 2
  • Mossab Saeed
    • 2
  • Sara Hendren
    • 3
  • Ellen T. Roche
    • 1
    • 4
  • Pedro J. del Nido
    • 2
  • Conor J. Walsh
    • 1
    • 4
  • Nikolay V. Vasilyev
    • 2
  1. 1.Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUSA
  2. 2.Boston Children’s HospitalHarvard Medical SchoolBostonUSA
  3. 3.Olin College of EngineeringNeedhamUSA
  4. 4.Harvard John A. Paulson School of Engineering and Applied SciencesCambridgeUSA

Personalised recommendations