Skip to main content
Log in

Influence of Inherent Mechanophenotype on Competitive Cellular Adherence

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Understanding the role of mechanophenotype in competitive adherence of cells to other cells versus underlying substrates can inform such processes as tissue development, cancer progression, and wound healing. This study investigated how mechanophenotype, defined by whole-cell, elastic/viscoelastic properties for the perinuclear region, and cellular assembly are intertwined through the mechanosensing process. Atomic force microscopy was used to characterize the temporal elastic/viscoelastic properties of individual and assembled fibroblasts grown on substrates with elastic moduli above, below, or similar to whole-cell mechanophenotypes measured for three, genetically modified cell lines. All cells were at their most compliant immediately after plating but transitioned to distinct, stiffer mechanophenotypes by Day 1 after acclimation. This mechanical state, and cellular assembly/morphology, did not change significantly over the following three days of testing, regardless of substrate compliance or cellular organization (multi-cell nodules/plaques or single cells). Interestingly, cells formed 3D nodules when attached to substrates with elastic moduli less than their own but spread readily on substrates with moduli equal to or greater than their own, suggesting a preference to adhere to the stiffest surface sensed (substrate or cell). This suggests that inherent mechanophenotype plays a role as a competing surface during microenvironment mechanosensing and subsequent cell–cell-substrate organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

COL-I:

Collagen type-1

dnRhoA:

dnRhoA (T19 N) - GFP transfected WI-38 cells

ECM:

Extracellular matrix

E elastic :

Elastic modulus

E 0 :

Instantaneous modulus

E R :

Relaxed modulus

FN:

Fibronectin

LN:

Laminin

PAAm:

Polyacrylamide

WI-38:

WI-38 VA-13 subline 2RA

β-Actin:

β-Actin-GFP transfected WI-38 cells

µ :

Apparent viscosity

References

  1. Aizawa, H., M. Sameshima, and I. Yahara. A green fluorescent protein-actin fusion protein dominantly inhibits cytokinesis, cell spreading, and locomotion in Dictyostelium. Cell Struct. Funct. 22(3):335–345, 1997.

    Article  CAS  PubMed  Google Scholar 

  2. Amin, E., B. N. Dubey, S. C. Zhang, L. Gremer, R. Dvorsky, J. M. Moll, M. S. Taha, L. Nagel-Steger, R. P. Piekorz, A. V. Somlyo, and M. R. Ahmadian. Rho-kinase: regulation, (dys)function, and inhibition. Biol. Chem. 394(11):1399–1410, 2013.

    Article  CAS  PubMed  Google Scholar 

  3. Brafman, D. A. Constructing stem cell microenvironments using bioengineering approaches. Physiol. Genomics 45(23):1123–1135, 2013.

    Article  CAS  PubMed  Google Scholar 

  4. Brieher, W. M., and A. S. Yap. Cadherin junctions and their cytoskeleton(s). Curr. Opin. Cell Biol. 25(1):39–46, 2013.

    Article  CAS  PubMed  Google Scholar 

  5. Choidas, A., A. Jungbluth, A. Sechi, J. Murphy, A. Ullrich, and G. Marriott. The suitability and application of a GFP-actin fusion protein for long-term imaging of the organization and dynamics of the cytoskeleton in mammalian cells. Eur. J. Cell Biol. 77(2):81–90, 1998.

    Article  CAS  PubMed  Google Scholar 

  6. Darling, E. M., and D. Di Carlo. High-throughput assessment of cellular mechanical properties. Annu. Rev. Biomed. Eng. 17:35–62, 2015.

    Article  CAS  PubMed  Google Scholar 

  7. Darling, E. M., M. Topel, S. Zauscher, T. P. Vail, and F. Guilak. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 41(2):454–464, 2008.

    Article  PubMed  Google Scholar 

  8. Darling, E. M., S. Zauscher, J. A. Block, and F. Guilak. A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys. J . 92(5):1784–1791, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Di Carlo, D. A mechanical biomarker of cell state in medicine. Jala 17(1):32–42, 2012.

    PubMed  Google Scholar 

  10. Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J . 86(1 Pt 1):617–628, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  12. Georges, P. C., and P. A. Janmey. Cell type-specific response to growth on soft materials. J. Appl. Physiol. (1985) 98(4):1547–1553, 2005.

    Article  Google Scholar 

  13. Ghosh, P. M., N. Ghosh-Choudhury, M. L. Moyer, G. E. Mott, C. A. Thomas, B. A. Foster, N. M. Greenberg, and J. I. Kreisberg. Role of RhoA activation in the growth and morphology of a murine prostate tumor cell line. Oncogene 18(28):4120–4130, 1999.

    Article  CAS  PubMed  Google Scholar 

  14. Gilchrist, C. L., E. M. Darling, J. Chen, and L. A. Setton. Extracellular matrix ligand and stiffness modulate immature nucleus pulposus cell-cell interactions. PLoS ONE 6(11):e27170, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez-Cruz, R. D., V. C. Fonseca, and E. M. Darling. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 109(24):E1523–E1529, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo, W. H., M. T. Frey, N. A. Burnham, and Y. L. Wang. Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J . 90(6):2213–2220, 2006.

    Article  CAS  PubMed  Google Scholar 

  17. Hosein, R. E., S. A. Williams, K. Haye, and R. H. Gavin. Expression of GFP-actin leads to failure of nuclear elongation and cytokinesis in Tetrahymena thermophila. J. Eukaryot. Microbiol. 50(6):403–408, 2003.

    Article  CAS  PubMed  Google Scholar 

  18. Jagielska, A., A. L. Norman, G. Whyte, K. J. Vliet, J. Guck, and R. J. Franklin. Mechanical environment modulates biological properties of oligodendrocyte progenitor cells. Stem Cells Dev 21(16):2905–2914, 2012.

    Article  CAS  PubMed  Google Scholar 

  19. Kular, J. K., S. Basu, and R. I. Sharma. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng 5:2041731414557112, 2014.

    Article  PubMed  Google Scholar 

  20. Labriola, N. R., and E. M. Darling. Temporal heterogeneity in single-cell gene expression and mechanical properties during adipogenic differentiation. J. Biomech. 48(6):1058–1066, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J . 79(1):144–152, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6(4):483–495, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. Mendez, M. G., D. Restle, and P. A. Janmey. Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys. J . 107(2):314–323, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parsons, J. T., A. R. Horwitz, and M. A. Schwartz. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11(9):633–643, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Poh, Y. C., F. Chowdhury, T. S. Tanaka, and N. Wang. Embryonic stem cells do not stiffen on rigid substrates. Biophys. J . 99(2):L19–L21, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ross, R. A., B. A. Spengler, and J. L. Biedler. Coordinate morphological and biochemical interconversion of human neuro-blastoma cells. J. Natl Cancer Inst. 71(4):741–749, 1983.

    CAS  PubMed  Google Scholar 

  27. Sadick, J. S., M. E. Boutin, D. Hoffman-Kim, and E. M. Darling. Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep 6:33999, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwarz, U. S., and M. L. Gardel. United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J. Cell Sci. 125(Pt 13):3051–3060, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sen, S., M. Dong, and S. Kumar. Isoform-specific contributions of alpha-actinin to glioma cell mechanobiology. PLoS ONE 4(12):e8427, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sen, S., W. P. Ng, and S. Kumar. Contributions of talin-1 to glioma cell-matrix tensional homeostasis. J. R. Soc. Interface 9(71):1311–1317, 2012.

    Article  CAS  PubMed  Google Scholar 

  31. Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J . 93(12):4453–4461, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stroka, K. M., and H. Aranda-Espinoza. Effects of morphology vs. cell-cell interactions on endothelial cell stiffness. Cell. Mol. Bioeng. 4(1):9–27, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3(4):413–438, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tse, J. R., and A. J. Engler. Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol 10:10–16, 2010.

    Google Scholar 

  35. Wang, J. H., and J. S. Lin. Cell traction force and measurement methods. Biomech. Model. Mechanobiol. 6(6):361–371, 2007.

    Article  PubMed  Google Scholar 

  36. Weber, G. F., M. A. Bjerke, and D. W. DeSimone. Integrins and cadherins join forces to form adhesive networks. J. Cell Sci. 124(Pt 8):1183–1193, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34, 2005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Louise E. O. Darling for the GFP plasmids and Jessica S. Sadick and Vera Fonseca for help with western blots. This work was supported by awards from the National Institute of Health (R01 AR063642, P20 GM104937) and the National Science Foundation (CAREER CBET 1253189). The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Science Foundation or National Institutes of Health.

Conflict of Interest

Manisha K. Shah, Iris H. Garcia-Pak, and Eric M. Darling declare that they have no conflicts of interest.

Data Accessibility

AFM and nodule quantification data can be downloaded from 10.6084/m9.figshare.4341887.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions

M.K.S. and E.M.D. designed the study, analyzed data, and wrote the manuscript. M.K.S. performed all AFM experiments and all experiments with non-transfected and transfected WI-38 cells lines. I.H.G.-P performed MG-63 and SH-SY5Y cellular assembly experiments. All authors gave final approval for publication.

Corresponding author

Correspondence to Eric M. Darling.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M.K., Garcia-Pak, I.H. & Darling, E.M. Influence of Inherent Mechanophenotype on Competitive Cellular Adherence. Ann Biomed Eng 45, 2036–2047 (2017). https://doi.org/10.1007/s10439-017-1841-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1841-5

Keywords

Navigation