Annals of Biomedical Engineering

, Volume 45, Issue 8, pp 1917–1928 | Cite as

An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device

  • Hao Su
  • Weijian Shang
  • Gang Li
  • Niravkumar Patel
  • Gregory S. Fischer
Article

Abstract

This paper presents a surgical master-slave teleoperation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. The slave robot consists of a piezoelectrically actuated 6-degree-of-freedom (DOF) robot for needle placement with an integrated fiber optic force sensor (1-DOF axial force measurement) using the Fabry-Perot interferometry (FPI) sensing principle; it is configured to operate inside the bore of the MRI scanner during imaging. By leveraging the advantages of pneumatic and piezoelectric actuation in force and position control respectively, we have designed a pneumatically actuated master robot (haptic device) with strain gauge based force sensing that is configured to operate the slave from within the scanner room during imaging. The slave robot follows the insertion motion of the haptic device while the haptic device displays the needle insertion force as measured by the FPI sensor. Image interference evaluation demonstrates that the telesurgery system presents a signal to noise ratio reduction of less than 17% and less than 1% geometric distortion during simultaneous robot motion and imaging. Teleoperated needle insertion and rotation experiments were performed to reach 10 targets in a soft tissue-mimicking phantom with 0.70 ± 0.35 mm Cartesian space error.

Keywords

MRI-compatible robot MR-conditional Image-guided surgery Percutaneous interventions Haptics Teleoperation 

References

  1. 1.
    Cepek, J., U. Lindner, S. Ghai, A. S. Louis, S. R. Davidson, M. Gertner, E. Hlasny, M. S. Sussman, A. Fenster, and J. Trachtenberg. Mechatronic system for in-bore MRI-guided insertion of needles to the prostate: an in vivo needle guidance accuracy study. J. Magn. Reson. Imaging 42(1):48–55, 2015.CrossRefPubMedGoogle Scholar
  2. 2.
    Chinzei, K. and K. Miller. Towards MRI guided surgical manipulator. Med. Sci. Monit. 7(1):153–163, 2001.PubMedGoogle Scholar
  3. 3.
    Comber, D. B., E. J. Barth, and R. J. Webster. Design and control of an magnetic resonance compatible precision pneumatic active cannula robot. J. Med. Dev. 8(1):011003, 2014.CrossRefGoogle Scholar
  4. 4.
    Elhawary, H., A. Zivanovic, M. Rea, B. Davies, C. Besant, D. McRobbie, N. de Souza, I. Young, and M. Lamperth. The feasibility of MR-image guided prostate biopsy using piezoceramic motors inside or near to the magnet isocentre. Med Image Comput Comput Assist Interv 9(Pt 1):519–526, 2006.PubMedGoogle Scholar
  5. 5.
    Eslami, S., W. Shang, G. Li, N. Patel, G. S. Fischer, J. Tokuda, N. Hata, C. M. Tempany, and I. Iordachita. In-bore prostate transperineal interventions with an MRI-guided parallel manipulator: system development and preliminary evaluation. Int. J. Med. Robot. Comput. Assist. Surg. 12:199–213, 2015.Google Scholar
  6. 6.
    Felfoul, O., A. Becker, C. Bergeles, and P. E. Dupont. Achieving commutation control of an MRI-powered robot actuator. IEEE Trans. Robot. 31(2):387–399, 2015.CrossRefGoogle Scholar
  7. 7.
    Gangopadhyay, T. K. Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fibre-optic vibration sensing. Sens. Actuators A 113(1):20–38, 2004.CrossRefGoogle Scholar
  8. 8.
    Ho, M., A. McMillan, J. Simard, R. Gullapalli, and J. Desai. Toward a SMA-actuated MRI-compatible neurosurgical robot. IEEE Trans. Robot. 28(1):213–222, 2012.CrossRefGoogle Scholar
  9. 9.
    Kokes, R., K. Lister, R. Gullapalli, B. Zhang, A. MacMillan, H. Richard, and J. P. Desai. Towards a teleoperated needle driver robot with haptic feedback for RFA of breast tumors under continuous MRI. Med. Image Anal. 13(3):445–455, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Krieger, A., S. Song, N. Bongjoon Cho, I. Iordachita, P. Guion, G. Fichtinger, and L. L. Whitcomb. Development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans. Mechatron. (99):1–12, 2012.Google Scholar
  11. 11.
    Li, G., H. Su, G. Cole, W. Shang, K. Harrington, A. Camilo, J.G. Pilitsis, and G. S. Fischer. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans. Biomed. Eng. 62(4):1077–1088, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li, M., A. Kapoor, D. Mazilu, and K. Horvath. Pneumatic actuated robotic assistant system for aortic valve replacement under MRI guidance. IEEE Trans. Biomed. Eng. 58(2):443–451, 2011.CrossRefPubMedGoogle Scholar
  13. 13.
    Nathoo, N., M. Çavusoglu, M. Vogelbaum, and G. Barnett. In touch with robotics: neurosurgery for the future. Neurosurgery 56(3):421, 2005.CrossRefPubMedGoogle Scholar
  14. 14.
    NEMA. Determination of image uniformity in diagnostic magnetic resonance images. NEMA standards publication MS 3-2008.Google Scholar
  15. 15.
    NEMA. Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. NEMA standard publication MS 1-2008.Google Scholar
  16. 16.
    Patel, N. A., T. van Katwijk, G. Li, P. Moreira, W. Shang, S. Misra, and G. S. Fischer. Closed-loop asymmetric-tip needle steering under continuous intraoperative MRI guidance. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4869–4874. IEEE, 2015.Google Scholar
  17. 17.
    Shang, W. Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback. PhD thesis, Worcester Polytechnic institute, 2014.Google Scholar
  18. 18.
    Shang, W., H. Su, G. Li, and G. S. Fischer. Teleoperation system with hybrid pneumatic-piezoelectric actuation for MRI-guided needle insertion with haptic feedback. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4092–4098. IEEE, 2013.Google Scholar
  19. 19.
    Su, H., W. Shang, G. Cole, G. Li, K. Harrington, A. Camilo, J. Tokuda, C. M. Tempany, N. Hata, and G. S. Fischer. Piezoelectrically-actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE/ASME Trans. Mechatron. 99(3):1–13, 2015.Google Scholar
  20. 20.
    Su, H., M. Zervas, G. Cole, C. Furlong, and G. S. Fischer. Real-time MRI-guided needle placement robot with integrated fiber optic force sensing. In: IEEE ICRA International Conference on Robotics and Automation, 2011.Google Scholar
  21. 21.
    Tilak, G., K. Tuncali, S.-E. Song, J. Tokuda, O. Olubiyi, F. Fennessy, A. Fedorov, T. Penzkofer, C. Tempany, and N. Hata. 3T MR-guided in-bore transperineal prostate biopsy: a comparison of robotic and manual needle-guidance templates. J. Magn. Reson. Imaging 42(1):63–71, 2015.CrossRefPubMedGoogle Scholar
  22. 22.
    Tse, Z., H. Elhawary, M. Rea, B. Davies, I. Young, and M. Lamperth. Haptic needle unit for MR-guided biopsy and its control. IEEE/ASME Trans. Mechatron. 17(1):183–187, 2012.CrossRefGoogle Scholar
  23. 23.
    Yakar, D., M. G. Schouten, D. G. H. Bosboom, J. O. Barentsz, T. W. J. Scheenen, and J. J. Futterer. Feasibility of a pneumatically actuated MR-compatible robot for transrectal prostate biopsy guidance. Radiology 260(1):241–247, 2011.CrossRefPubMedGoogle Scholar
  24. 24.
    Yang, B., S. Roys, U.-X. Tan, M. Philip, H. Richard, R. P. Gullapalli, and J. P. Desai. Design, development, and evaluation of a master-slave surgical system for breast biopsy under continuous MRI. Int. J. Robot. Res. 33:616–630, 2013.Google Scholar
  25. 25.
    Yang, B., U.-X. Tan, A. B. McMillan, R. Gullapalli, and J. P. Desai. Design and control of a 1-DOF MRI-compatible pneumatically actuated robot with long transmission lines. IEEE/ASME Trans. Mechatron. 16(6):1040–1048, 2011.CrossRefGoogle Scholar
  26. 26.
    Yu, Y., T. K. Podder, Y. D. Zhang, W. S. Ng, V. Misic, J. Sherman, D. Fuller, D. J. Rubens, J. G. Strang, R. A. Brasacchio, and E. M. Messing. Robotic system for prostate brachytherapy. Comput. Aided Surg. 12(6):366–370, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  1. 1.Wyss Institute for Biologically Inspired Engineering and the John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Automation and Interventional Medicine Robotics Laboratory, Department of Mechanical EngineeringWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations