Annals of Biomedical Engineering

, Volume 45, Issue 6, pp 1387–1398 | Cite as

Stiffness of Protease Sensitive and Cell Adhesive PEG Hydrogels Promotes Neovascularization In Vivo

  • Ryan M. Schweller
  • Zi Jun Wu
  • Bruce Klitzman
  • Jennifer L. WestEmail author


Materials that support the assembly of new vasculature are critical for regenerative medicine. Controlling the scaffold’s mechanical properties may help to optimize neovascularization within implanted biomaterials. However, reducing the stiffness of synthetic hydrogels usually requires decreasing polymer densities or increasing chain lengths, both of which accelerate degradation. We synthesized enzymatically-degradable poly(ethylene glycol) hydrogels with compressive moduli from 2 to 18 kPa at constant polymer density, chain length, and proteolytic degradability by inserting an allyloxycarbonyl functionality into the polymer backbone. This group competes with acrylates during photopolymerization to alter the crosslink network structure and reduce the hydrogel’s stiffness. Hydrogels that incorporated (soft) or lacked (stiff) this group were implanted subcutaneously in rats to investigate the role of stiffness on host tissue interactions. Changes in tissue integration were quantified after 4 weeks via the hydrogel area replaced by native tissue (tissue area fraction), yielding 0.136 for softer vs. 0.062 for stiffer hydrogels. Including soluble FGF-2 and PDGF-BB improved these responses to 0.164 and 0.089, respectively. Softer gels exhibited greater vascularization with 8.6 microvessels mm−2 compared to stiffer gels at 2.4 microvessels mm−2. Growth factors improved this to 11.2 and 4.9 microvessels mm−2, respectively. Softer hydrogels tended to display more sustained responses, promoting neovascularization and tissue integration in synthetic scaffolds.


Angiogenesis Endothelial cell Inflammation Mechanical properties 



The authors thank Drs. Suzana Vellejo-Heligon, Nga Le Brown, and Mohamed Ibrahim for helpful discussions. This work was supported by grants from the National Institutes of Health R01EB16629 (to JLW) and F32HL120650 (to RMS) and a Post-Doctoral Fellowship from Regeneration Next Initiative at Duke University (to RMS).

Supplementary material

10439_2017_1822_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1408 kb)


  1. 1.
    Ali, S., J. E. Saik, D. J. Gould, M. E. Dickinson, and J. L. West. Immobilization of cell-adhesive laminin peptides in degradable PEGDA hydrogels influences endothelial cell tubulogenesis. Bioresour. Open Access. 2:241–249, 2013.CrossRefGoogle Scholar
  2. 2.
    Bajaj, P., R. M. Schweller, A. Khademhosseini, J. L. West, and R. Bashir. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 16:247–276, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bassiouny, H. S., R. H. Song, X. F. Hong, A. Singh, H. Kocharyan, and S. Glagov. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation 98:157–163, 1998.CrossRefPubMedGoogle Scholar
  4. 4.
    Benoit, D. S., A. R. Durney, and K. S. Anseth. Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation. Tissue Eng. 12:1663–1673, 2006.CrossRefPubMedGoogle Scholar
  5. 5.
    Blakney, A. K., M. D. Swartzlander, and S. J. Bryant. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A. 100:1375–1386, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brandl, F., F. Sommer, and A. Goepferich. Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28:134–146, 2007.CrossRefPubMedGoogle Scholar
  7. 7.
    Browning, M. B., and E. Cosgriff-Hernandez. Development of a biostable replacement for PEGDA hydrogels. Biomacromolecules 13:779–786, 2012.CrossRefPubMedGoogle Scholar
  8. 8.
    Butcher, D. T., T. Alliston, and V. M. Weaver. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9:108–122, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Campagnolo, L., A. Leahy, S. Chitnis, S. Koschnick, M. J. Fitch, J. T. Fallon, D. Loskutoff, M. B. Taubman, and H. Stuhlmann. EGFL7 is a chemoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury. Am. J. Pathol. 167:275–284, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cao, R., E. Brakenhielm, R. Pawliuk, D. Wariaro, M. J. Post, E. Wahlberg, P. Leboulch, and Y. Cao. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9:604–613, 2003.CrossRefPubMedGoogle Scholar
  11. 11.
    Dikovsky, D., H. Bianco-Peled, and D. Seliktar. Defining the role of matrix compliance and proteolysis in three-dimensional cell spreading and remodeling. Biophys. J. 94:2914–2925, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.CrossRefPubMedGoogle Scholar
  13. 13.
    Drury, J. L., and D. J. Mooney. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351, 2003.CrossRefPubMedGoogle Scholar
  14. 14.
    Ehrbar, M., A. Sala, P. Lienemann, A. Ranga, K. Mosiewicz, A. Bittermann, S. C. Rizzi, F. E. Weber, and M. P. Lutolf. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys. J . 100:284–293, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Garcia, J. R., A. Y. Clark, and A. J. Garcia. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects. J. Biomed. Mater. Res. A. 104:889–900, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gill, B. J., D. L. Gibbons, L. C. Roudsari, J. E. Saik, Z. H. Rizvi, J. D. Roybal, J. M. Kurie, and J. L. West. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 72:6013–6023, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hsu, C. W., R. M. Olabisi, E. A. Olmsted-Davis, A. R. Davis, and J. L. West. Cathepsin K-sensitive poly(ethylene glycol) hydrogels for degradation in response to bone resorption. J. Biomed. Mater. Res. A 98:53–62, 2011.CrossRefPubMedGoogle Scholar
  18. 18.
    Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15:802–812, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kloxin, A. M., C. J. Kloxin, C. N. Bowman, and K. S. Anseth. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 22:3484–3494, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lambert, C. A., A. C. Colige, C. Munaut, C. M. Lapiere, and B. V. Nusgens. Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension. Matrix Biol. 20:397–408, 2001.CrossRefPubMedGoogle Scholar
  21. 21.
    Lynn, A. D., T. R. Kyriakides, and S. J. Bryant. Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 93:941–953, 2010.PubMedGoogle Scholar
  22. 22.
    Mammoto, T., and D. E. Ingber. Mechanical control of tissue and organ development. Development 137:1407–1420, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mann, B. K., R. H. Schmedlen, and J. L. West. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22:439–444, 2001.CrossRefPubMedGoogle Scholar
  24. 24.
    Matsumoto, A., T. Kumagai, H. Aota, H. Kawasaki, and R. Arakawa. Reassessment of free-radical polymerization mechanism of allyl acetate based on end-group determination of resulting oligomers by MALDI-TOF-MS spectrometry. Polym. J. 41:26–33, 2009.CrossRefGoogle Scholar
  25. 25.
    Moon, J. J., J. E. Saik, R. A. Poche, J. E. Leslie-Barbick, S. H. Lee, A. A. Smith, M. E. Dickinson, and J. L. West. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31:3840–3847, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nguyen, K. T., and J. L. West. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314, 2002.CrossRefPubMedGoogle Scholar
  27. 27.
    Nillesen, S. T., P. J. Geutjes, R. Wismans, J. Schalkwijk, W. F. Daamen, and T. H. van Kuppevelt. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28:1123–1131, 2007.CrossRefPubMedGoogle Scholar
  28. 28.
    Norton, L. W., H. E. Koschwanez, N. A. Wisniewski, B. Klitzman, and W. M. Reichert. Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response. J. Biomed. Mater. Res. A. 81:858–869, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Phelps, E. A., N. Landazuri, P. M. Thule, W. R. Taylor, and A. J. Garcia. Bioartificial matrices for therapeutic vascularization. Proc. Natl Acad. Sci. U.S.A. 107:3323–3328, 2010.CrossRefPubMedGoogle Scholar
  30. 30.
    Saik, J. E., D. J. Gould, E. M. Watkins, M. E. Dickinson, and J. L. West. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater. 7:133–143, 2011.CrossRefPubMedGoogle Scholar
  31. 31.
    Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9:671–675, 2012.CrossRefPubMedGoogle Scholar
  32. 32.
    Schweller, R. M., and J. L. West. Encoding hydrogel mechanics via network cross-linking structure. ACS Biomater. Sci. Eng. 1:335–344, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sieminski, A. L., and K. J. Gooch. Biomaterial–microvasculature interactions. Biomaterials 21:2232–2241, 2000.CrossRefPubMedGoogle Scholar
  34. 34.
    Singh, R. K., D. Seliktar, and A. J. Putnam. Capillary morphogenesis in PEG-collagen hydrogels. Biomaterials 34:9331–9340, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Spiller, K. L., R. R. Anfang, K. J. Spiller, J. Ng, K. R. Nakazawa, J. W. Daulton, and G. Vunjak-Novakovic. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:4477–4488, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tous, E., H. M. Weber, M. H. Lee, K. J. Koomalsingh, T. Shuto, N. Kondo, J. H. Gorman, 3rd, D. Lee, R. C. Gorman, and J. A. Burdick. Tunable hydrogel–microsphere composites that modulate local inflammation and collagen bulking. Acta Biomater. 8:3218–3227, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tseng, H., D. S. Puperi, E. J. Kim, S. Ayoub, J. V. Shah, M. L. Cuchiara, J. L. West, and K. J. Grande-Allen. Anisotropic poly(ethylene glycol)/polycaprolactone hydrogel-fiber composites for heart valve tissue engineering. Tissue Eng. Part A 20:2634–2645, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Von Offenberg Sweeney, N., P. M. Cummins, E. J. Cotter, P. A. Fitzpatrick, Y. A. Birney, E. M. Redmond, and P. A. Cahill. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochem. Biophys. Res. Commun. 329:573–582, 2005.CrossRefGoogle Scholar
  39. 39.
    West, J. L., and J. A. Hubbell. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244, 1999.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Ryan M. Schweller
    • 1
  • Zi Jun Wu
    • 2
  • Bruce Klitzman
    • 1
    • 2
  • Jennifer L. West
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Kenan Plastic Surgery Research LabsDuke University School of MedicineDurhamUSA

Personalised recommendations