Annals of Biomedical Engineering

, Volume 45, Issue 6, pp 1487–1495 | Cite as

A Novel Apparatus for the Multifaceted Evaluation of Arterial Function Through Transmural Pressure Manipulation

  • Toshiyuki YaguchiEmail author
  • Yalin Cong
  • Kenji Shimo
  • Takahiro Kurokawa
  • Shukei Sugita
  • Kazuaki Nagayama
  • Hiroshi Masuda
  • Takeo MatsumotoEmail author


A novel apparatus for the multifaceted evaluation of artery function was developed. It measures endothelial and smooth muscle functions and the pressure–strain elastic modulus (E p). A rigid airtight chamber with an ultrasound probe was attached to the upper arm to manipulate the transmural pressure of the brachial artery. Endothelial function was measured via a standard flow-mediated dilation (FMD) protocol. Smooth muscle function was evaluated via a myogenic contraction of the artery following the application of negative pressure to the chamber and was named pressure-mediated contraction (PMC). E p was obtained by measuring the instantaneous increase in the artery diameter following the negative pressure application. The PMC and FMD values had a significant negative correlation with age, indicating that the age-related decrease in FMD is caused by the decay of endothelial and smooth muscle function. A consideration of PMC may help improve the accuracy of artery function measurement. E p in subjects aged >40 years was found to be significantly higher in the supra-physiological pressure range than in the physiological one (p = 0.02); this did not occur in younger subjects. Artery stiffening may begin in the supra-physiological range, and this stiffness may also be used for the diagnosis of atherosclerosis.


Atherosclerosis Flow-mediated dilation Endothelial cell Smooth muscle cell Bayliss effect 



This work was supported in part by “the Knowledge Hub” of AICHI, the Priority Research Project, and KAKENHI (#24650295, #24700495, and #26560257).

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary material

10439_2017_1810_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1677 kb)


  1. 1.
    Adams, M. R., J. Robinson, R. McCredie, J. P. Seale, K. E. Sorensen, J. E. Deanfield, and D. S. Celermajer. Smooth muscle dysfunction occurs independently of impaired endothelium-dependent dilation in adults at risk of atherosclerosis. J. Am. Coll. Cardiol. 32:123–127, 1998.CrossRefPubMedGoogle Scholar
  2. 2.
    Bank, A. J., R. F. Wilson, S. H. Kubo, J. E. Holte, T. J. Dresing, and H. Wang. Direct effects of smooth muscle relaxation and contraction on in vivo human brachial artery elastic properties. Circ. Res. 77:1008–1016, 1995.CrossRefPubMedGoogle Scholar
  3. 3.
    Bayliss, W. M. On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. 28:220–231, 1902.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bots, M. L., J. Westerink, T. J. Rabelink, and E. J. de Koning. Assessment of flow-mediated vasodilatation (FMD) of the brachial artery: effects of technical aspects of the FMD measurement on the FMD response. Eur. Heart J. 26:363–368, 2005.CrossRefPubMedGoogle Scholar
  5. 5.
    Brook, R., M. Grau, C. Kehrer, S. Dellegrottaglie, B. Khan, and S. Rajagopalan. Intrasubject variability of radial artery flow-mediated dilatation in healthy subjects and implications for use in prospective clinical trials. Am. J. Cardiol. 96:1345–1348, 2005.CrossRefPubMedGoogle Scholar
  6. 6.
    Corretti, M. C., T. J. Anderson, E. J. Benjamin, D. Celermajer, F. Charbonneau, M. A. Creager, J. Deanfield, H. Drexler, M. Gerhard-Herman, D. Herrington, P. Vallance, J. Vita, R. Vogel, and International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery. J. Am. Coll. Cardiol. 39:257–265, 2002. Erratum in: J Am Coll Cardiol, 20;39(6):1082, 2002.Google Scholar
  7. 7.
    Cox, D. A., J. A. Vita, C. B. Treasure, R. D. Fish, R. W. Alexander, P. Ganz, and A. P. Selwyn. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 80:458–465, 1989.CrossRefPubMedGoogle Scholar
  8. 8.
    Dyson, K. S., J. K. Shoemaker, and R. L. Hughson. Effect of acute sympathetic nervous system activation on flow-mediated dilation of brachial artery. Am. J. Physiol. Heart Circ. Physiol. 290:H1446–H1453, 2006.CrossRefPubMedGoogle Scholar
  9. 9.
    Drzewiecki, G., and J. J. Pilla. Noninvasive measurement of the human brachial artery pressure-area relation in collapse and hypertension. Ann. Biomed. Eng. 26:965–974, 1998.CrossRefPubMedGoogle Scholar
  10. 10.
    Egashira, K., T. Inou, Y. Hirooka, H. Kai, M. Sugimachi, S. Suzuki, T. Kuga, Y. Urabe, and A. Takeshita. Effects of age on endothelium-dependent vasodilation of resistance coronary artery by acetylcholine in humans. Circulation 88:77–81, 1993.CrossRefPubMedGoogle Scholar
  11. 11.
    Gao, Y. Z., R. J. Saphirstein, R. Yamin, B. Suki, and K. G. Morgan. Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function? Am. J. Physiol. Heart Circ. Physiol. 307:H1252–H1261, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ghiadoni, L., A. E. Donald, M. Cropley, M. J. Mullen, G. Oakley, M. Taylor, G. O’Connor, J. Betteridge, N. Klein, A. Steptoe, and J. E. Deanfield. Mental stress induces transient endothelial dysfunction in humans. Circulation 102:2473–2478, 2000.CrossRefPubMedGoogle Scholar
  13. 13.
    Harris, C. W., J. L. Edwards, A. Baruch, W. A. Riley, B. E. Pusser, W. J. Rejeski, and D. M. Herrington. Effects of mental stress on brachial artery flow-mediated vasodilation in healthy normal individuals. Am. Heart J. 139:405–411, 2000.PubMedGoogle Scholar
  14. 14.
    Hayashi, K., K. Ide, and T. Matsumoto. Aortic Walls in Atherosclerotic Rabbits-Mechanical Study. ASME J. Biomech. Eng. 116:284–293, 1994.CrossRefGoogle Scholar
  15. 15.
    Irace, C., M. E. Tschakovsky, C. Carallo, C. Cortese, and A. Gnasso. Endothelial dysfunction or dysfunctions? Identification of three different FMD responses in males with type 2 diabetes. Atherosclerosis 200:439–445, 2008.CrossRefPubMedGoogle Scholar
  16. 16.
    Kaiser, D. R., K. Mullen, and A. J. Bank. Brachial artery elastic mechanics in patients with heart failure. Hypertension 38:1440–1445, 2001.CrossRefPubMedGoogle Scholar
  17. 17.
    Karatzi, K., C. Papamichael, E. Karatzis, T. G. Papaioannou, K. Stamatelopoulos, N. A. Zakopoulos, A. Zampelas, and J. Lekakis. Acute smoke-induced endothelial dysfunction is more prolonged in smokers than in non-smokers. Int. J. Cardiol. 120:404–406, 2007.CrossRefPubMedGoogle Scholar
  18. 18.
    Kubota, K., M. Karino, T. Yaguchi, H. Miyagi, S. Sugita, H. Masuda, and T. Matsumoto. Development of a cardiosynchronous chopper pressure application method for non-invasive measurement of smooth muscle function in human brachial artery. Proceedings of the 28th Bioengineering Conference, JSME, 2F31 (2016).Google Scholar
  19. 19.
    Lind, L., K. Johansson, and J. Hall. The effects of mental stress and the cold pressure test on flow-mediated vasodilation. Blood Press. 11:22–27, 2002.CrossRefPubMedGoogle Scholar
  20. 20.
    Malik, J., D. Wichterle, T. Haas, V. Melenovsky, J. Simek, and T. Stulc. Repeatability of noninvasive surrogates of endothelial function. Am. J. Cardiol. 94:693–696, 2004.CrossRefPubMedGoogle Scholar
  21. 21.
    Maruhashi, T., A. Nakashima, T. Matsumoto, N. Oda, Y. Iwamoto, A. Iwamoto, M. Kajikawa, Y. Kihara, K. Chayama, C. Goto, K. Noma, and Y. Higashi. Relationship between nitroglycerine-induced vasodilation and clinical severity of peripheral artery disease. Atherosclerosis 235:65–70, 2014.CrossRefPubMedGoogle Scholar
  22. 22.
    Masoura, C., C. Pitsavos, K. Aznaouridis, I. Skoumas, C. Vlachopoulos, and C. Stefanadis. Arterial endothelial function and wall thickness in familial hypercholesterolemia and familial combined hyperlipidemia and the effect of statins. A systematic review and meta-analysis. Atherosclerosis 214:129–138, 2011.CrossRefPubMedGoogle Scholar
  23. 23.
    Matsumoto, T., H. Abe, T. Ohashi, Y. Kato, and M. Sato. Local elastic modulus of atherosclerotic lesions of rabbit thoracic aortas measured by pipette aspiration method. Physiol. Meas. 23:635–648, 2002.CrossRefPubMedGoogle Scholar
  24. 24.
    Mnozanffarian, D., E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, S. de Ferranti, J. P. Despres, H. J. Fullerton, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, S. Liu, R. H. Mackey, D. B. Matchar, D. K. McGuire, E. R. Mohler, 3rd, C. S. Moy, P. Muntner, M. E. Mussolino, K. Nasir, R. W. Neumar, G. Nichol, L. Palaniappan, D. K. Pandey, M. J. Reeves, C. J. Rodriguez, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, J. Z. Willey, D. Woo, R. W. Yeh, and M. B. Turner. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131:e29–322, 2015.CrossRefGoogle Scholar
  25. 25.
    Peterson, L. H., R. E. Jensen, and J. Parnell. Mechanical properties of arteries in vivo. Circ. Res. 8:622–639, 1960.CrossRefGoogle Scholar
  26. 26.
    Richter, H. A., and C. Mittermayer. Volume elasticity, modulus of elasticity and compliance of normal and arteriosclerotic human aorta. Biorheology 21:723–734, 1984.PubMedGoogle Scholar
  27. 27.
    Shau, Y. W., C. L. Wang, J. Y. Shieh, and T. C. Hsu. Noninvasive assessment of the viscoelasticity of peripheral arteries. Ultrasound Med. Biol. 25:1377–1388, 1999.CrossRefPubMedGoogle Scholar
  28. 28.
    Simova, I., A. Nossikoff, and S. Denchev. Interobserver and intraobserver variability of flow-mediated vasodilatation of the brachial artery. Echocardiography 25:77–83, 2008.PubMedGoogle Scholar
  29. 29.
    Szijgyarto, I. C., T. J. King, J. Ku, V. J. Poitras, B. J. Gurd, and K. E. Pyke. The impact of acute mental stress on brachial artery flow-mediated dilation differs when shear stress is elevated by reactive hyperemia versus handgrip exercise. Appl. Physiol. Nutr. Metab. 38:498–506, 2013.CrossRefPubMedGoogle Scholar
  30. 30.
    Takase, B., H. Hattori, Y. Tanaka, A. Uehata, M. Nagata, M. Ishihara, and M. Fujita. acute effect of whole-body periodic acceleration on brachial flow-mediated vasodilatation assessed by a novel semi-automatic vessel chasing UNEXEF18G system. J. Cardiovasc. Ultrasound 21:130–136, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vanhoutte, P. M. Ageing and endothelial dysfunction. Eur. Heart J. Suppl. 4:A8–A17, 2002.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Toshiyuki Yaguchi
    • 1
    • 2
    Email author
  • Yalin Cong
    • 1
  • Kenji Shimo
    • 1
  • Takahiro Kurokawa
    • 1
  • Shukei Sugita
    • 1
  • Kazuaki Nagayama
    • 1
    • 3
  • Hiroshi Masuda
    • 4
  • Takeo Matsumoto
    • 1
    • 5
    Email author
  1. 1.Biomechanics Laboratory, Department of Mechanical EngineeringNagoya Institute of TechnologyNagoyaJapan
  2. 2.Division of Electronic and Mechanical Engineering, Department of Science and Engineering, School of Science and EngineeringTokyo Denki UniversityHikigunJapan
  3. 3.Department of Intelligent Systems Engineering, College of EngineeringIbaraki UniversityHitachiJapan
  4. 4.UNEX CorporationNagoyaJapan
  5. 5.Biomechanics Laboratory, Department of Mechanical Science and Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations