Annals of Biomedical Engineering

, Volume 45, Issue 5, pp 1352–1364 | Cite as

Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime

  • Yusuke Inoue
  • Tomoyuki Yokota
  • Tsuyoshi Sekitani
  • Akiko Kaneko
  • Taeseong Woo
  • Shingo Kobayashi
  • Tomokazu Shibuya
  • Masaru Tanaka
  • Hiroyuki Kosukegawa
  • Itsuro Saito
  • Takashi Isoyama
  • Yusuke Abe
  • Tomoyuki Yambe
  • Takao Someya
  • Masaki SekinoEmail author


There are recent reports of hybrid tissue–fabric materials with good performance—high biocompatibility and high mechanical strength. In this study, we demonstrate the capability of a hybrid material as a long-term filter for blood proteins. Polyester fabrics were implanted into rats to fabricate hybrid tissue–fabric material sheets. The hybrid materials comprised biological tissue grown on the fabric. The materials were extracted from the rat’s body, approximately 100 days post-implantation. The tissues were decellularized to prevent immunological rejection. An antithrombogenicity test was performed by dropping blood onto the hybrid material surface. The hybrid material showed lesser blood coagulation than polysulfone and cellulose. Blood plasma was filtered using the hybrid material to evaluate the protein removal percentage and the lifetime of the hybrid material in vitro. The hybrid material showed a comparable performance to conventional filters for protein removal. Moreover, the hybrid material could work as a protein filter for 1 month, which is six times the lifetime of polysulfone.


Glucose sensor Protein filter Blood coagulation Decellularization Scaffold 



The authors gratefully acknowledge Dr. Yoshinori Mitamura and Hidemoto Nakagawa for their helpful in-depth discussions on this study. This study was supported by JST ERATO. The strength test of hybrid material was supported by the cooperation program of research institutes in Tohoku University.


  1. 1.
    Chandran, K. B., D. Gao, G. Han, H. Baraniewski, and J. D. Corson. Finite-element analysis of arterial anastomoses with vein, Dacron and PTFE grafts. Med. Biol. Eng. Comput. 30:413–418, 1992.CrossRefPubMedGoogle Scholar
  2. 2.
    Dungel, P., N. Long, B. Yu, Y. Moussy, and F. Moussy. Study of the effects of tissue reactions on the function of implanted glucose sensors. J. Biomed. Mater. Res. A 85(3):699–706, 2008.CrossRefPubMedGoogle Scholar
  3. 3.
    Funamoto, S., K. Nam, T. Kimura, A. Murakoshi, Y. Hashimoto, K. Niwaya, and A. Kishida. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31:3590–3595, 2010.CrossRefPubMedGoogle Scholar
  4. 4.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer, 1993.CrossRefGoogle Scholar
  5. 5.
    Gough, D. A., L. S. Kumosa, T. L. Routh, J. T. Lin, and J. Y. Lucisano. Function of an implanted tissue glucose sensor for more than 1 year in animals. Sci. Transl. Med. 2:42–53, 2010.CrossRefGoogle Scholar
  6. 6.
    Honge JL, Funder J, Hansen E, Dohmen PM, Konertz W, Hasenkam JM. Recellularization of aortic valves in pigs. Eur. J. Cardiothorac. Surg. 39:829–834, 2011.CrossRefPubMedGoogle Scholar
  7. 7.
    Iatridis, J. C., J. Wu, J. A. Yandow, and H. M. Langevin. Subcutaneous tissue mechanical behavior is linear and viscoelastic under uniaxial tension. Connect. Tissue Res. 44:208–217, 2003.CrossRefPubMedGoogle Scholar
  8. 8.
    Ishihara, K., H. Fujita, T. Yoneyama, and Y. Iwasaki. Antithrombogenic polymer alloy composed of 2-methacryloyloxyethyl phosphorylcholine polymer and segmented polyurethane. J. Biomater. Sci. Polym. Ed. 11:1183–1195, 2000.CrossRefPubMedGoogle Scholar
  9. 9.
    Jia, W. Z., K. Wang, and X. H. Xia. Elimination of electrochemical interferences in glucose biosensors. TrAC Trends Anal. Chem. 29:306–318, 1994.CrossRefGoogle Scholar
  10. 10.
    Ju, Y. M., B. Yu, L. West, Y. Moussy, and F. Moussy. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. II. Long term in vitro/in vivo sensitivity characteristics of sensors with NDGA or GA crosslinked collagen scaffolds. J. Biomed. Mater. Res. A 92:650–658, 2010.PubMedGoogle Scholar
  11. 11.
    Kaltenbrunner, M., T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, and T. Someya. An ultra-lightweight design for imperceptible plastic electronics. Nature 499:458–463, 2013.CrossRefPubMedGoogle Scholar
  12. 12.
    Kawase, Y., Y. Inoue, T. Isoyama, I. Saito, H. Nakagawa, T. Ono, and H. Kumagai. Development of hybrid blood removal cannula use of titan rigid for ventricular assist device (VAD). Seitai Ikougaku 51:R-229, 2013.Google Scholar
  13. 13.
    Kim, W. G., J. K. Park, and W. Y. Lee. Tissue-engineered heart valve leaflets: an effective method of obtaining acellularized valve xenografts. Int. J. Artif. Organs 25:791–797, 2002.PubMedGoogle Scholar
  14. 14.
    Kingshott, P., H. Thissen, and H. J. Griesser. Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 23:2043–2056, 2002.CrossRefPubMedGoogle Scholar
  15. 15.
    Kishi, A., T. Isoyama, I. Saito, H. Miura, H. Nakagawa, A. Kouno, and M. Noshiro. Use of in vivo insert molding to form a jellyfish valve leaflet. Artif. Organs 34(12):1125–1131, 2010.CrossRefPubMedGoogle Scholar
  16. 16.
    Le Tissier, P., J. P. Stoye, Y. Takeuchi, C. Patience, and R. A. Weiss. Two sets of human-tropic pig retrovirus. Nature 389:681–682, 1997.CrossRefPubMedGoogle Scholar
  17. 17.
    Leypoldt, J. K. Fouling of ultrafiltration and hemodialysis membranes by plasma proteins. Blood Purif. 12:285–291, 1994.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu, G. F., Z. J. He, D. P. Yang, X. F. Han, T. F. Guo, C. G. Hao, and C. L. Nie. Decellularized aorta of fetal pigs as a potential scaffold for small diameter tissue engineered vascular graft. Chin. Med. J. (Engl.) 121:1398–1406, 2008.Google Scholar
  19. 19.
    Morais, J. M., F. Papadimitrakopoulos, and D. J. Burgess. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 12:188–196, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Murase, Y., Y. Narita, H. Kagami, K. Miyamoto, Y. Ueda, M. Ueda, and T. Murohara. Evaluation of compliance and stiffness of decellularized tissues as scaffolds for tissue-engineered small caliber vascular grafts using intravascular ultrasound. ASAIO J. 52:450–455, 2006.CrossRefPubMedGoogle Scholar
  21. 21.
    Nakayama, Y., and T. Tsujinaka. Acceleration of robust “Biotube” vascular graft fabrication by in-body tissue architecture technology using a novel eosin Y-releasing mold. J. Biomed. Mater. Res. B Appl. Biomater. 102(2):231–238, 2014.CrossRefPubMedGoogle Scholar
  22. 22.
    Nakayama, Y., S. Yamaoka, M. Yamanami, M. Fujiwara, M. Uechi, K. Takamizawa, and H. Yaku. Water-soluble argatroban for antithrombogenic surface coating of tissue-engineered cardiovascular tissues. J. Biomed. Mater. Res. B Appl. Biomater. 99:420–430, 2011.CrossRefPubMedGoogle Scholar
  23. 23.
    Nauli, A. M., Y. Sun, J. D. Whittimore, S. Atyia, G. Krishnaswamy, and S. M. Nauli. Chylomicrons produced by Caco-2 cells contained ApoB-48 with diameter of 80–200 nm. Physiol. Rep. 2:e12018, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nishida, K., M. Sakakida, K. Ichinose, T. Uemura, M. Uehara, K. Kajiwara, and N. Nakabayashi. Development of a ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible membrane, 2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate. Med. Prog. Technol. 21:91–103, 1995.PubMedGoogle Scholar
  25. 25.
    Novak, M. T., F. Yuan, and W. M. Reichert. Modeling the relative impact of capsular tissue effects on implanted glucose sensor time lag and signal attenuation. Anal. Bioanal. Chem. 398:1695–1705, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Onuki, Y., U. Bhardwaj, F. Papadimitrakopoulos, and D. J. Burgess. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J. Diabetes Sci. Technol. 2:1003–1015, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Patience, C., Y. Takeuchi, and R. A. Weiss. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3:282–286, 1997.CrossRefPubMedGoogle Scholar
  28. 28.
    Patil, S., N. F. Martinez, J. R. Lozano, and R. Garcia. Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity. J. Mol. Recognit. 20:516–523, 2007.CrossRefPubMedGoogle Scholar
  29. 29.
    Quinn, C. P., C. P. Pathak, A. Heller, and J. A. Hubbell. Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors. Biomaterials 16:389–396, 1995.CrossRefPubMedGoogle Scholar
  30. 30.
    Ranieri, J. P., D. L. Hern-Anderson, A. M. J. Gonin, and B. K. McIlroy Processed ratite carotid arteries as xenogeneic small bore vascular grafts. U.S. Patent No. 20,020,077,697, 2002.Google Scholar
  31. 31.
    Reach, G., and G. S. Wilson. Can continuous glucose monitoring be used for the treatment of diabetes? Anal. Chem. 64:381A–386A, 1992.PubMedGoogle Scholar
  32. 32.
    Reddy, S. M., and P. M. Vagama. Surfactant-modified poly(vinyl chloride) membranes as biocompatible interfaces for amperometric enzyme electrodes. Anal. Chim. Acta 350:77–89, 1997.CrossRefGoogle Scholar
  33. 33.
    Reichert, W. M., and S. S. Saavedra. Materials consideration in the selection, performance, and adhesion of polymeric encapsulants for implantable sensors. Mater. Sci. Technol. 64(6):A381–A386, 1992.Google Scholar
  34. 34.
    Reichert, W. M. and A. A. Sharkawy. Biosensors. In: Handbook of Biomaterials Evaluation: Scientific, Technical, and Clinical Testing of Implant Materials. Philadelphia: Taylor & Francis, pp. 439–459, 1999.Google Scholar
  35. 35.
    Sakai, O., K. Kanda, K. Takamizawa, T. Sato, H. Yaku, and Y. Nakayama. Faster and stronger vascular “Biotube” graft fabrication in vivo using a novel nicotine-containing mold. J. Biomed. Mater. Res. B Appl. Biomater. 90:412–420, 2009.PubMedGoogle Scholar
  36. 36.
    Shaw, G. W., D. J. Claremont, and J. C. Pickup. In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients. Biosens. Bioelectron. 6:401–406, 1991.CrossRefPubMedGoogle Scholar
  37. 37.
    Sheller, N. B., S. Petrash, M. D. Foster, and V. V. Tsukruk. Atomic force microscopy and X-ray reflectivity studies of albumin adsorbed onto self-assembled monolayers of hexadecyltrichlorosilane. Langmuir 14:4535–4544, 1998.CrossRefGoogle Scholar
  38. 38.
    Tanaka, M., T. Hayashi, and S. Morita. The roles of water molecules at the biointerface of medical polymers. Polym. J. 45:701–710, 2013.CrossRefGoogle Scholar
  39. 39.
    Tanaka, M., T. Motomura, M. Kawada, T. Anzai, Y. Kasori, T. Shiroya, K. Shimura, and A. Mochizuki. Blood compatible aspects of poly(2-methoxyethylacrylate)(PMEA)—relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials 21(14):1471–1481, 2000.CrossRefPubMedGoogle Scholar
  40. 40.
    Tinkilic, N., O. Cubuk, and I. Isildak. Glucose and urea biosensors based on all solid-state PVC–NH2 membrane electrodes. Anal. Chim. Acta 452:29–34, 2002.CrossRefGoogle Scholar
  41. 41.
    Toscano, A., and M. M. Santore. Fibrinogen adsorption on three silica-based surfaces: conformation and kinetics. Langmuir 22:2588–2597, 2006.CrossRefPubMedGoogle Scholar
  42. 42.
    Vadgama, P. M., and G. Reach. Advances in Biosensors: Chemical Sensors for In Vivo Monitoring. London: JAI Press, 1993.Google Scholar
  43. 43.
    Valdes, T. I., and F. Moussy. A ferric chloride pre-treatment to prevent calcification of Nafion membrane used for implantable biosensors. Biosens. Bioelectron. 14(6):579–585, 1999.CrossRefPubMedGoogle Scholar
  44. 44.
    Wisniewski, N., F. Moussy, and W. M. Reichert. Characterization of implantable biosensor membrane biofouling. Fresenius J. Anal. Chem. 366:611–621, 2000.CrossRefPubMedGoogle Scholar
  45. 45.
    Xu, Y., G. Zhang, Y. Chang, Y. X. Qiu, and C. Wang. The preparation of acellular dermal matrices by freeze-thawing and ultrasonication process and the evaluation of its antigenicity. Cell Biochem. Biophys. 73(1):27–33, 2015.CrossRefPubMedGoogle Scholar
  46. 46.
    Yokota, T., K. Kuribara, T. Tokuhara, U. Zschieschang, H. Klauk, K. Takimiya, and T. Someya. Flexible low-voltage organic transistors with high thermal stability at 250°C. Adv. Mater. 25:3639–3644, 2013.CrossRefPubMedGoogle Scholar
  47. 47.
    Yokota, T., T. Sekitani, T. Tokuhara, N. Take, U. Zschieschang, H. Klauk, and T. Someya. Sheet-type flexible organic active matrix amplifier system using pseudo-CMOS circuits with floating-gate structure. Electron. Devices 59:3434–3441, 2012.CrossRefGoogle Scholar
  48. 48.
    Zhang, S., Y. Benmakroha, P. Rolfe, T. Shinobu, and I. Kazuhiko. Development of a haemocompatible pO2 sensor with phospholipid-based copolymer membrane. Biosens. Bioelectron. 11:1019–1029, 1996.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Yusuke Inoue
    • 1
    • 2
    • 3
  • Tomoyuki Yokota
    • 1
  • Tsuyoshi Sekitani
    • 1
    • 4
  • Akiko Kaneko
    • 1
  • Taeseong Woo
    • 1
  • Shingo Kobayashi
    • 5
  • Tomokazu Shibuya
    • 6
  • Masaru Tanaka
    • 5
  • Hiroyuki Kosukegawa
    • 7
  • Itsuro Saito
    • 2
  • Takashi Isoyama
    • 2
  • Yusuke Abe
    • 2
  • Tomoyuki Yambe
    • 3
  • Takao Someya
    • 1
  • Masaki Sekino
    • 1
    Email author
  1. 1.Department of Electrical Engineering and Information Systems, Graduate School of EngineeringThe University of TokyoTokyoJapan
  2. 2.Department of Biomedical Engineering, Graduate School of MedicineThe University of TokyoTokyoJapan
  3. 3.Department of Medical Engineering and Cardiology, Institute of Development, Aging and CancerTohoku UniversityMiyagiJapan
  4. 4.The Institute of Scientific and Industrial Research (ISIR)Osaka UniversityOsakaJapan
  5. 5.Department of Applied Chemistry, Graduate School of EngineeringKyushu UniversityFukuokaJapan
  6. 6.Department of Biochemical Engineering, Graduate School of Science and EngineeringYamagata UniversityYonezawaJapan
  7. 7.Institute of Fluid ScienceTohoku UniversityMiyagiJapan

Personalised recommendations