Annals of Biomedical Engineering

, Volume 45, Issue 7, pp 1746–1757 | Cite as

3D Cell Culturing and Possibilities for Myometrial Tissue Engineering

  • Minoo Heidari KaniEmail author
  • Eng-Cheng Chan
  • Roger C. Young
  • Trent Butler
  • Roger Smith
  • Jonathan W. Paul
Reproductive Tissue Engineering


Research insights into uterine function and the mechanisms of labour have been hindered by the lack of suitable animal and cellular models. The use of traditional culturing methods limits the exploration of complex uterine functions, such as cell interactions, connectivity and contractile behaviour, as it fails to mimic the three-dimensional (3D) nature of uterine cell interactions in vivo. Animal models are an option, however, use of these models is constrained by ethical considerations as well as translational limitations to humans. Evidence indicates that these limitations can be overcome by using 3D culture systems, or 3D Bioprinters, to model the in vivo cytological architecture of the tissue in an in vitro environment. 3D cultured or 3D printed cells can be used to form an artificial tissue. This artificial tissue can not only be used as an appropriate model in which to study cellular function and organisation, but could also be used for regenerative medicine purposes including organ or tissue transplantation, organ donation and obstetric care. The current review describes recent developments in cell culture that can facilitate the development of myometrial 3D structures and tissue engineering applications.


Reproductive tissue engineering Uterus 3D culture Regenerative medicine Bioprinting Myometrium 



This work was conducted with the support of an Australian NHMRC grant to Roger Smith (G1200367).

Conflict of Interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.


  1. 1.
    Adissu, H. A., E. K. Asem, and S. A. Lelievre. Three-dimensional cell culture to model epithelia in the female reproductive system. Reprod. Sci. 14:11–19, 2007.CrossRefPubMedGoogle Scholar
  2. 2.
    Almany, L., and D. Seliktar. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26:2467–2477, 2005.CrossRefPubMedGoogle Scholar
  3. 3.
    Astashkina, A., B. Mann, and D. W. Grainger. A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol. Ther. 134:82–106, 2012.CrossRefPubMedGoogle Scholar
  4. 4.
    Bajpai, V. K., P. Mistriotis, Y. H. Loh, G. Q. Daley, and S. T. Andreadis. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates. Cardiovasc. Res. 96:391–400, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Boretti, M. I., and K. J. Gooch. Effect of extracellular matrix and 3D morphogenesis on islet hormone gene expression by Ngn3-infected mouse pancreatic ductal epithelial cells. Tissue Eng. A 14:1927–1937, 2008.CrossRefGoogle Scholar
  6. 6.
    Bursztyn, L., O. Eytan, A. J. Jaffa, and D. Elad. Mathematical model of excitation-contraction in a uterine smooth muscle cell. Am. J. Physiol. Cell Physiol. 292:C1816–C1829, 2007.CrossRefPubMedGoogle Scholar
  7. 7.
    Castillejo, M., E. Rebollar, M. Oujja, M. Sanz, A. Selimis, M. Sigletou, S. Psycharakis, A. Ranella, and C. Fotakis. Fabrication of porous biopolymer substrates for cell growth by UV laser: The role of pulse duration. Appl. Surf. Sci. 258:8919–8927, 2012.CrossRefGoogle Scholar
  8. 8.
    Chamley-Campbell, J., G. R. Campbell, and R. Ross. The smooth muscle cell in culture. Physiol. Rev. 59:1–61, 1979.PubMedGoogle Scholar
  9. 9.
    Charwat, V., K. Schütze, W. Holnthoner, A. Lavrentieva, R. Gangnus, P. Hofbauer, C. Hoffmann, B. Angres, and C. Kasper. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures. J. Biotechnol. 205:70–81, 2015.CrossRefPubMedGoogle Scholar
  10. 10.
    Condon, J., S. Yin, B. Mayhew, R. A. Word, W. E. Wright, J. W. Shay, and W. E. Rainey. Telomerase immortalization of human myometrial cells. Biol. Reprod. 67(2):506–514, 2002.CrossRefPubMedGoogle Scholar
  11. 11.
    Dainiak, M. B., I. N. Savina, I. Musolino, A. Kumar, B. Mattiasson, and I. Y. Galaev. Biomimetic macroporous hydrogel scaffolds in a high-throughput screening format for cell-based assays. Biotechnol. Prog. 24:1373–1383, 2008.CrossRefPubMedGoogle Scholar
  12. 12.
    Dallot, E., M. Pouchelet, N. Gouhier, D. Cabrol, F. Ferre, and M. Breuiller-Fouche. Contraction of cultured human uterine smooth muscle cells after stimulation with endothelin-1. Biol. Reprod. 68:937–942, 2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Dhiman, H. K., A. R. Ray, and A. K. Panda. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials 26:979–986, 2005.CrossRefPubMedGoogle Scholar
  14. 14.
    Drover, J. W., and R. F. Casper. Initiation of parturition in humans. Can. Med. Assoc. J. 128:387–392, 1983.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Elliott, N. T., and F. Yuan. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J. Pharm. Sci. 100:59–74, 2011.CrossRefPubMedGoogle Scholar
  16. 16.
    El-Sherbiny, I. M., and M. H. Yacoub. Hydrogel scaffolds for tissue engineering: Progress and challenges. Global Cardiol. Sci. Pract. 2013:38, 2013.CrossRefGoogle Scholar
  17. 17.
    Equils, O., P. Nambiar, C. J. Hobel, R. Smith, C. F. Simmons, and S. Vali. A computer simulation of progesterone and Cox2 inhibitor treatment for preterm labor. PLoS ONE 5:e8502, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fitzgibbon, J., J. J. Morrison, T. J. Smith, and M. O’Brien. Modulation of human uterine smooth muscle cell collagen contractility by thrombin, Y-27632, TNF alpha and indomethacin. Reprod. Biol. Endocrinol. 7:2, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fleischer, S., J. Miller, H. Hurowitz, A. Shapira, and T. Dvir. Effect of fiber diameter on the assembly of functional 3D cardiac patches. Nanotechnology 26(29):291002, 2015.CrossRefPubMedGoogle Scholar
  20. 20.
    Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Vis. Exp. 51:2720, 2011.Google Scholar
  21. 21.
    Gong, P. Y., W. Zheng, D. Xiao, and X. Y. Jiang. Microscale methods to assemble mammalian cells into tissue-like structures. Sci. China Life Sci. 55:862–871, 2012.CrossRefPubMedGoogle Scholar
  22. 22.
    Graf, B. W., and S. A. Boppart. Imaging and analysis of three-dimensional cell culture models. Methods Mol. Biol. 591:211–227, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Grefte, S., S. Vullinghs, A. M. Kuijpers-Jagtman, R. Torensma, and J. W. Von den Hoff. Matrigel, but not collagen I, maintains the differentiation capacity of muscle derived cells in vitro. Biomed. Mater. 7:055004, 2012.CrossRefPubMedGoogle Scholar
  24. 24.
    Grima, R. Directed cell migration in the presence of obstacles. Theor. Biol. Med. Model. 4:2, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Harris, L. J., H. Abdollahi, P. Zhang, S. McIlhenny, T. N. Tulenko, and P. J. DiMuzio. Differentiation of adult stem cells into smooth muscle for vascular tissue engineering. J. Surg. Res. 168:306–314, 2011.CrossRefPubMedGoogle Scholar
  26. 26.
    Hellström, M., R. R. El-Akouri, C. Sihlbom, B. M. Olsson, J. Lengqvist, H. Bäckdahl, B. R. Johansson, M. Olausson, S. Sumitran-Holgersson, and M. Brännström. Towards the development of a bioengineered uterus: Comparison of different protocols for rat uterus decellularization. Acta Biomater. 10:5034–5042, 2014.CrossRefPubMedGoogle Scholar
  27. 27.
    Hellström, M., J. M. Moreno-Moya, S. Bandstein, E. Bom, R. R. Akouri, K. Miyazaki, T. Maruyama, and M. Brännström. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil. Steril. 106(2):487–496, 2016.CrossRefPubMedGoogle Scholar
  28. 28.
    Holmes, T. C., S. de Lacalle, X. Su, G. Liu, A. Rich, and S. Zhang. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl Acad. Sci. USA 97:6728–6733, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hsieh, W.-C., and J.-J. Liau. Cell culture and characterization of cross-linked poly(vinyl alcohol)-g-starch 3D scaffold for tissue engineering. Carbohydr. Polym. 98:574–580, 2013.CrossRefPubMedGoogle Scholar
  30. 30.
    Huh, D., G. A. Hamilton, and D. E. Ingber. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21:745–754, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ikonen, L., E. Kerkelä, G. Metselaar, M. C. A. Stuart, M. R. de Jong, and K. Aalto-Setälä. 2D and 3D self-assembling nanofiber hydrogels for cardiomyocyte culture. BioMed. Res. Int. 2013. doi: 10.1155/2013/285678.PubMedGoogle Scholar
  32. 32.
    Kakade, S., and G. Mani. A comparative study of the effects of vitamin C, sirolimus, and paclitaxel on the growth of endothelial and smooth muscle cells for cardiovascular medical device applications. Drug Des. Dev. Ther. 7:529–544, 2013.Google Scholar
  33. 33.
    Heidari Kani, M., R. Smith, T. Butler, C. Chan, and R. Young. Glass wool as a model scaffold for 3D culture of uterine smooth muscle cells. Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress. 2016. doi: 10.3389/conf.FBIOE.2016.01.02608.
  34. 34.
    Khait, L., C. J. Hodonsky, and R. K. Birla. Variable optimization for the formation of three-dimensional self-organized heart muscle. Vitro Cell. Dev. Biol. 45:592–601, 2009.CrossRefGoogle Scholar
  35. 35.
    Khetan, S., and J. Burdick. Cellular encapsulation in 3D hydrogels for tissue engineering. J. Vis. Exp. 2009. doi: 10.3791/1590.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Khoshfetrat, Pakazad S. A. Savov, A. Van De Stolpe and R. Dekker. A novel stretchable micro-electrode array (SMEA) design for directional stretching of cells. J. Micromech. Microeng. 24(3):034003, 2014.CrossRefGoogle Scholar
  37. 37.
    Kucukgul, C., B. Ozler, H. E. Karakas, D. Gozuacik, and B. Koc. 3D hybrid bioprinting of macrovascular structures. Procedia Eng. 59:183–192, 2013.CrossRefGoogle Scholar
  38. 38.
    Kuo, C. W., D. Y. Chueh, and P. Chen. Investigation of size-dependent cell adhesion on nanostructured interfaces. J. Nanobiotechnol. 12:54, 2014.CrossRefGoogle Scholar
  39. 39.
    Lawrence, B. J., and S. V. Madihally. Cell colonization in degradable 3D porous matrices. Cell Adhens. Migr. 2:9–16, 2008.CrossRefGoogle Scholar
  40. 40.
    Lee, H. J., E. R. Norwitz, and J. Shaw. Contemporary management of fibroids in pregnancy. Rev. Obstet. Gynecol. 3:20–27, 2010.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Lee, V., G. Singh, J. P. Trasatti, C. Bjornsson, X. Xu, T. N. Tran, S. S. Yoo, G. Dai, and P. Karande. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. C Methods 20:473–484, 2014.CrossRefGoogle Scholar
  42. 42.
    Lee, J. B., S. H. Son, M. C. Park, T. H. Kim, M. G. Kim, S. D. Yoo, and S. Kim. A novel in vitro permeability assay using three-dimensional cell culture system. J. Biotechnol. 205:93–100, 2015.CrossRefPubMedGoogle Scholar
  43. 43.
    Lee, D. W., S. H. Yi, S. H. Jeong, B. Ku, J. Kim, and M.-Y. Lee. Plastic pillar inserts for three-dimensional (3D) cell cultures in 96-well plates. Sens. Actuators B 177:78–85, 2013.CrossRefGoogle Scholar
  44. 44.
    Lei, K. F., M. H. Wu, C. W. Hsu, and Y. D. Chen. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Biosens. Bioelectron. 51:16–21, 2013.CrossRefPubMedGoogle Scholar
  45. 45.
    Li, Z., and Z. Cui. Three-dimensional perfused cell culture. Biotechnol. Adv. 32:243–254, 2014.CrossRefPubMedGoogle Scholar
  46. 46.
    Liu, J. Y., H. F. Peng, and S. T. Andreadis. Contractile smooth muscle cells derived from hair-follicle stem cells. Cardiovasc. Res. 79:24–33, 2008.CrossRefPubMedGoogle Scholar
  47. 47.
    Lovitt, C. J., T. B. Shelper, and V. M. Avery. Advanced cell culture techniques for cancer drug discovery. Biology 3:345–367, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Masuda, S., and T. Shimizu. Three-dimensional cardiac tissue fabrication based on cell sheet technology. Adv. Drug Deliv. Rev. 96:103–109, 2016.CrossRefPubMedGoogle Scholar
  49. 49.
    Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21:157–161, 2003.CrossRefPubMedGoogle Scholar
  50. 50.
    Mironov, V., V. Kasyanov, and R. R. Markwald. Organ printing: from bioprinter to organ biofabrication line. Curr. Opin. Biotechnol. 22:667–673, 2011.CrossRefPubMedGoogle Scholar
  51. 51.
    Mironov, V., N. Reis, and B. Derby. Review: bioprinting: a beginning. Tissue Eng. 12:631–634, 2006.CrossRefPubMedGoogle Scholar
  52. 52.
    Mitchell, B. F., and M. J. Taggart. Are animal models relevant to key aspects of human parturition? Am. J. Physiol. 297:R525–R545, 2009.Google Scholar
  53. 53.
    Miyazaki, K., and T. Maruyama. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials 35:8791–8800, 2014.CrossRefPubMedGoogle Scholar
  54. 54.
    Monga, M., C. Y. Ku, K. Dodge, and B. M. Sanborn. Oxytocin-stimulated responses in a pregnant human immortalized myometrial cell line. Biol. Reprod. 55:427–432, 1996.CrossRefPubMedGoogle Scholar
  55. 55.
    Negishi, J., S. Funamoto, T. Kimura, K. Nam, T. Higami, and A. Kishida. Effect of treatment temperature on collagen structures of the decellularized carotid artery using high hydrostatic pressure. J. Artif. Organs 14:223–231, 2011.CrossRefPubMedGoogle Scholar
  56. 56.
    Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ong, S.-M., C. Zhang, Y.-C. Toh, S. H. Kim, H. L. Foo, C. H. Tan, D. van Noort, S. Park, and H. Yu. A gel-free 3D microfluidic cell culture system. Biomaterials 29:3237–3244, 2008.CrossRefPubMedGoogle Scholar
  58. 58.
    Palumbo, F. S., G. Pitarresi, C. Fiorica, S. Rigogliuso, G. Ghersi, and G. Giammona. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering. Mater. Sci. Eng. C 33:2541–2549, 2013.CrossRefGoogle Scholar
  59. 59.
    Park, W. S., S. C. Heo, E. S. Jeon, D. H. Hong, Y. K. Son, J. H. Ko, H. K. Kim, S. Y. Lee, J. H. Kim, and J. Han. Functional expression of smooth muscle-specific ion channels in TGF-β1-treated human adipose-derived mesenchymal stem cells. Am. J. Physiol. 305:C377–C391, 2013.CrossRefGoogle Scholar
  60. 60.
    Pati, F., J.-H. Shim, J.-S. Lee, and D.-W. Cho. 3D printing of cell-laden constructs for heterogeneous tissue regeneration. Manuf. Lett. 1:49–53, 2013.CrossRefGoogle Scholar
  61. 61.
    Rampichová, M., J. Chvojka, M. Buzgo, E. Prosecká, P. Mikeš, L. Vysloužilová, D. Tvrdík, P. Kochová, T. Gregor, D. Lukáš, and E. Amler. Elastic three-dimensional poly (ε-caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Prolif. 46:23–37, 2013.CrossRefPubMedGoogle Scholar
  62. 62.
    Ravi, M., V. Paramesh, S. R. Kaviya, E. Anuradha, and F. D. Paul Solomon. 3D cell culture systems: Advantages and applications. J. Cell. Physiol. 230:16–26, 2015.CrossRefPubMedGoogle Scholar
  63. 63.
    Schindler, M., A. Nur-E-Kamal, I. Ahmed, J. Kamal, H. Y. Liu, N. Amor, A. S. Ponery, D. P. Crockett, T. H. Grafe, H. Y. Chung, T. Weik, E. Jones, and S. Meiners. Living in three dimensions: 3D nanostructured environments for cell culture and regenerative medicine. Cell Biochem. Biophys. 45:215–227, 2006.CrossRefPubMedGoogle Scholar
  64. 64.
    Shamir, E. R., and A. J. Ewald. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15:647–664, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Shay, J. W., and W. E. Wright. Use of telomerase to create bioengineered tissues. Ann. N. Y. Acad. Sci. 479–491:2005, 1057.Google Scholar
  66. 66.
    Shrestha, K. R., Y. H. Park, Y. S. Choi, I. G. Kim, S. Piao, A. R. Jung, S. H. Jeon, S. H. Oh, J. H. Lee, and J. Y. Lee. Bladder reconstruction using stem cells seeded on multilayered scaffolds in a mucosa preserving partial cystectomy model. Tissue Eng. Regener. Med. 12:427–434, 2015.CrossRefGoogle Scholar
  67. 67.
    Shynlova, O., P. Tsui, S. Jaffer, and S. J. Lye. Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur. J. Obstet. Gynecol. Reprod. Biol. 144(Supplement 1):S2–S10, 2009.CrossRefPubMedGoogle Scholar
  68. 68.
    Simon, K. A., K. M. Park, B. Mosadegh, A. B. Subramaniam, A. D. Mazzeo, P. M. Ngo, and G. M. Whitesides. Polymer-based mesh as supports for multi-layered 3D cell culture and assays. Biomaterials 35:259–268, 2014.CrossRefPubMedGoogle Scholar
  69. 69.
    Sims, S. M., E. E. Daniel, and R. E. Garfield. Improved electrical coupling in uterine smooth muscle is associated with increased numbers of gap junctions at parturition. J. Gen. Physiol. 80:353–375, 1982.CrossRefPubMedGoogle Scholar
  70. 70.
    Sokolowski, P., F. Saison, W. Giles, S. McGrath, D. Smith, J. Smith, and R. Smith. Human uterine wall tension trajectories and the onset of parturition. PLoS ONE 5:e11037, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Stile, R. A., W. R. Burghardt, and K. E. Healy. Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 32:7370–7379, 1999.CrossRefGoogle Scholar
  72. 72.
    Stratmann, A. T., D. Fecher, G. Wangorsch, C. Göttlich, T. Walles, H. Walles, T. Dandekar, G. Dandekar, and S. L. Nietzer. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol. Oncol. 8:351–365, 2014.CrossRefPubMedGoogle Scholar
  73. 73.
    Sullivan, D. C., S. H. Mirmalek-Sani, D. B. Deegan, P. M. Baptista, T. Aboushwareb, A. Atala, and J. J. Yoo. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33:7756–7764, 2012.CrossRefPubMedGoogle Scholar
  74. 74.
    Sylvain, C., F. Jean-Christophe, G. Bertrand, P. Benjamin, B. Reine, R. Murielle, L. Eric, D. Bernard, A. Joëlle, and G. Fabien. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3:025001, 2011.CrossRefGoogle Scholar
  75. 75.
    Taggart, M. J., A. Blanks, S. Kharche, A. Holden, B. Wang, and H. Zhang. Towards understanding the myometrial physiome: approaches for the construction of a virtual physiological uterus. BMC Pregnancy Childbirth 7(Suppl 1):S3, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Tamayol, A., M. Akbari, N. Annabi, A. Paul, A. Khademhosseini, and D. Juncker. Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnol. Adv. 31:669–687, 2013.CrossRefPubMedGoogle Scholar
  77. 77.
    Tan, Y., D. J. Richards, T. C. Trusk, R. P. Visconti, M. J. Yost, M. S. Kindy, C. J. Drake, W. S. Argraves, R. R. Markwald, and Y. Mei. 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6:024111, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Topman, G., N. Shoham, O. Sharabani-Yosef, F. H. Lin, and A. Gefen. A new technique for studying directional cell migration in a hydrogel-based three-dimensional matrix for tissue engineering model systems. Micron 51:9–12, 2013.CrossRefPubMedGoogle Scholar
  79. 79.
    Turnbull, A. C. Myometrial contractility in pregnancy and its regulation. Proc R. Soc. Med. 64:1015–1017, 1971.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Turner, W. S., N. Sandhu, and K. E. McCloskey. Tissue engineering: Construction of a multicellular 3D scaffold for the delivery of layered cell sheets. J. Visualized Exp. 92:e51044–e51044, 2014.Google Scholar
  81. 81.
    Wang, Z., Y. Cui, J. Wang, X. Yang, Y. Wu, K. Wang, X. Gao, D. Li, Y. Li, X. L. Zheng, Y. Zhu, D. Kong, and Q. Zhao. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35:5700–5710, 2014.CrossRefPubMedGoogle Scholar
  82. 82.
    Wang, L., L. Liu, X. Li, N. Magome, K. Agladze, and Y. Chen. Multi-electrode monitoring of guided excitation in patterned cardiomyocytes. Microelectron. Eng. 111:267–271, 2013.CrossRefGoogle Scholar
  83. 83.
    Wozniak, M. A., and P. J. Keely. Use of three-dimensional collagen gels to study mechanotransduction in T47D breast epithelial cells. Biol. Proced. Online 7:144–161, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Xiao, Q., G. Wang, Z. Luo, and Q. Xu. The mechanism of stem cell differentiation into smooth muscle cells. Thromb. Haemost. 104:440–448, 2010.CrossRefPubMedGoogle Scholar
  85. 85.
    Xu, T., H. Kincaid, A. Atala, and J. J. Yoo. High-throughput production of single-cell microparticles using an inkjet printing technology. Trans. ASME Ser. B 130:210171–210175, 2008.Google Scholar
  86. 86.
    Xu, T., J. I. Rodriguez-Devora, D. Reyna-Soriano, M. Bhuyan, L. Zhu, K. Wang, and Y. Yuan. Chapter 6 - Principles of Bioprinting Technology. In: Regenerative medicine applications in organ transplantation, edited by G. Orlando, J. Lerut, S. Soker, and R. J. Stratta. Boston: Academic Press, 2014, pp. 67–79.CrossRefGoogle Scholar
  87. 87.
    Yamamoto, M., N. Kawashima, N. Takashino, Y. Koizumi, K. Takimoto, N. Suzuki, M. Saito, and H. Suda. Three-dimensional spheroid culture promotes odonto/osteoblastic differentiation of dental pulp cells. Arch. Oral Biol. 59:310–317, 2014.CrossRefPubMedGoogle Scholar
  88. 88.
    Yan, P., C. Xia, C. Duan, S. Li, and Z. Mei. Biological characteristics of foam cell formation in smooth muscle cells derived from Bone Marrow stem cells. Int. J. Biol. Sci. 7:937–946, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Yoshii, Y., A. Waki, K. Yoshida, A. Kakezuka, M. Kobayashi, H. Namiki, Y. Kuroda, Y. Kiyono, H. Yoshii, T. Furukawa, T. Asai, H. Okazawa, J. G. Gelovani, and Y. Fujibayashi. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials 32:6052–6058, 2011.CrossRefPubMedGoogle Scholar
  90. 90.
    Young, R. C. Myocytes, myometrium, and uterine contractions. Ann. N. Y. Acad. Sci. 1101:72–84, 2007.CrossRefPubMedGoogle Scholar
  91. 91.
    Young, R. C., R. Schumann, and P. Zhang. Three-dimensional culture of human uterine smooth muscle myocytes on a resorbable scaffolding. Tissue Eng. 9:451–459, 2003.CrossRefPubMedGoogle Scholar
  92. 92.
    Yu, C., Z. Zhu, L. Wang, Q. Wang, N. Bao, and H. Gu. A new disposable electrode for electrochemical study of leukemia K562 cells and anticancer drug sensitivity test. Biosens. Bioelectron. 53:142–147, 2014.CrossRefPubMedGoogle Scholar
  93. 93.
    Zhang, S., F. Gelain, and X. Zhao. Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin. Cancer Biol. 15:413–420, 2005.CrossRefPubMedGoogle Scholar
  94. 94.
    Zhao, X., L. Liu, J. Wang, Y. Xu, W. Zhang, G. Khang, and X. Wang. In vitro vascularization of a combined system based on a 3D printing technique. J Tissue Eng Regen Med. 2014. doi: 10.1002/term.1863.Google Scholar
  95. 95.
    Zhao, Z. K., H. L. Yu, F. Xiao, S. W. Li, W. B. Liao, and K. L. Zhao. Muscle-derived stem cells differentiate into functional smooth muscle cells for ureter tissue engineering: An experimental study. Biotechnol. Bioprocess Eng. 17:456–464, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  1. 1.Mothers and Babies Research Centre, School of Medicine and Public Health, Faculty of Health and MedicineUniversity of NewcastleCallaghanAustralia
  2. 2.Hunter Medical Research InstituteNew Lambton HeightsAustralia
  3. 3.Priority Research Centre of Reproductive ScienceUniversity of NewcastleCallaghanAustralia
  4. 4.John Hunter HospitalNew Lambton HeightsAustralia

Personalised recommendations