Annals of Biomedical Engineering

, Volume 45, Issue 2, pp 394–404 | Cite as

Transcatheter Valve Underexpansion Limits Leaflet Durability: Implications for Valve-in-Valve Procedures

  • Caitlin Martin
  • Wei SunEmail author
The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair


Transcatheter aortic valve (TAV) implantation within a failed bioprosthetic valve is a growing trend for high-risk patients. The non-compliant stent of the previous prosthesis may prevent full expansion of the TAV, which has been shown to distort the leaflet configuration, and has been hypothesized to adversely affect durability. In this study, TAV leaflet fatigue damage under cyclic pressurization in the setting of stent underexpansion by 0 (fully expanded), 1, 2 and 3 mm was simulated using finite element analysis to test this hypothesis. In the 2 and 3 mm underexpanded devices, the TAV leaflets exhibited severe pin-wheeling during valve closure, which increased leaflet stresses dramatically, and resulted in accelerated fatigue damage of the leaflets. The leaflet fatigue damage in the 1 mm underexpanded case was similar to that in the fully expanded case. Clinically a range of 10–15% underexpansion is generally considered acceptable; however, it was observed in this study that ≥2 mm (≥9.1%) underexpansion, will significantly impact device durability. Further study is necessary to determine the impact of various deployment conditions, i.e. non-uniform and non-circular deployments and different implantation heights, on differing TAV devices, but it is clear that the normal TAV leaflet configuration must be preserved in order to preserve durability.


Valve-in-valve Transcatheter aortic valve Stent underexpansion Soft tissue fatigue damage Finite element analysis 



Research for this project was funded in part by NIH HL104080 and HL108240 grants and a NIH F31 HL112632 predoctoral fellowship.

Conflict of Interest



  1. 1.
    Abbasi, M., and A. N. Azadani. Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion. J. Biomech. 48:3663–3671, 2015.CrossRefPubMedGoogle Scholar
  2. 2.
    Azadani, A. N., and E. E. Tseng. Transcatheter heart valves for failing bioprostheses: state-of-the-art review of valve-in-valve implantation. Circ. Cardiovasc. Interv. 4:621–628, 2011.CrossRefPubMedGoogle Scholar
  3. 3.
    Bruschi, G., L. Botta, P. Fratto, and L. Martinelli. Failed valve-in-valve transcatheter mitral valve implantation. Eur. J. Cardiothorac. Surg. 45:e127, 2014.CrossRefPubMedGoogle Scholar
  4. 4.
    Butany, J., V. Nair, S. W. Leong, G. S. Soor, and C. Feindel. Carpentier-Edwards Perimount valves—morphological findings in surgical explants. J. Card. Surg. 22:7–12, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen, H. L., and K. Liu. Clinical outcomes for transcatheter valve-in-valve in treating surgical bioprosthetic dysfunction: a meta-analysis. Int. J. Cardiol. 212:138–141, 2016.CrossRefPubMedGoogle Scholar
  6. 6.
    Chevalier, F., J. Leipsic, and P. Genereux. Valve-in-valve implantation with a 23-mm balloon-expandable transcatheter heart valve for the treatment of a 19-mm stentless bioprosthesis severe aortic regurgitation using a strategy of “extreme” underfilling. Catheter. Cardiovasc. Interv. 84:503–508, 2014.CrossRefPubMedGoogle Scholar
  7. 7.
    Corden, J., T. David, and J. Fisher. Determination of the curvatures and bending strains in open trileaflet heart valves. Proc. Inst. Mech. Eng. Part H 209:121–128, 1995.CrossRefGoogle Scholar
  8. 8.
    Cribier, A., H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106:3006–3008, 2002.CrossRefPubMedGoogle Scholar
  9. 9.
    Dorfmann, A., and R. W. Ogden. A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41:1855–1878, 2004.CrossRefGoogle Scholar
  10. 10.
    Dvir D., H. Eltchaninoff, J. Ye, A. Kan, E. Durand, A. Bizios, A. Cheung, M. Aziz, M. Simonato, C. Tron, Y. Arbel, R. Moss, J. Leipsic, H. Ofek, G. Perlman, M. Barbanti, M. A. Seidman, P. Blanke, R. Yao, R. Boone, S. Lauck, S. Lichtenstein, D. Wood, A. Cribier, and J. G. Webb. First look at long-term durability of transcatheter heart valves: assessment of valve function up to 10-years after implantation. In: Euro PCR 2016, Paris, France, 2016.Google Scholar
  11. 11.
    Dvir, D., J. G. Webb, S. Bleiziffer, M. Pasic, R. Waksman, S. Kodali, M. Barbanti, A. Latib, U. Schaefer, J. Rodes-Cabau, H. Treede, N. Piazza, D. Hildick-Smith, D. Himbert, T. Walther, C. Hengstenberg, H. Nissen, R. Bekeredjian, P. Presbitero, E. Ferrari, A. Segev, A. de Weger, S. Windecker, N. E. Moat, M. Napodano, M. Wilbring, A. G. Cerillo, S. Brecker, D. Tchetche, T. Lefevre, F. De Marco, C. Fiorina, A. S. Petronio, R. C. Teles, L. Testa, J. C. Laborde, M. B. Leon, R. Kornowski, and I. Valve-in-Valve International Data Registry. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA 312:162–170, 2014.CrossRefPubMedGoogle Scholar
  12. 12.
    Faerber, G., S. Schleger, M. Diab, M. Breuer, H. Figulla, W. Eichinger, and T. Doenst. Valve-in-valve transcatheter aortic valve implantation: the new playground for prothesis-patient mismatch. J. Interv. Cardiol. 27:287–292, 2014.CrossRefPubMedGoogle Scholar
  13. 13.
    Gunning, P. S., N. Saikrishnan, A. P. Yoganathan, and L. M. McNamara. Total ellipse of the heart valve: the impact of eccentric stent distortion on the regional dynamic deformation of pericardial tissue leaflets of a transcatheter aortic valve replacement. J. R. Soc. Interface 12:20150737, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gunning, P. S., T. J. Vaughan, and L. M. McNamara. Simulation of self expanding transcatheter aortic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation. Ann. Biomed. Eng. 42:1989–2001, 2014.CrossRefPubMedGoogle Scholar
  15. 15.
    Gurvitch, R., A. Cheung, J. Ye, D. A. Wood, A. B. Willson, S. Toggweiler, R. Binder, and J. G. Webb. Transcatheter valve-in-valve implantation for failed surgical bioprosthetic valves. J. Am. Coll. Cardiol. 58:2196–2209, 2011.CrossRefPubMedGoogle Scholar
  16. 16.
    Harbaoui, B., P. Y. Courand, Z. Schmitt, F. Farhat, R. Dauphin, and P. Lantelme. Early Edwards SAPIEN valve degeneration after transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 9:198–199, 2016.CrossRefPubMedGoogle Scholar
  17. 17.
    Himbert, D., F. Pontnau, D. Messika-Zeitoun, F. Descoutures, D. Détaint, C. Cueff, M. Sordi, J.-P. Laissy, S. Alkhoder, E. Brochet, B. Iung, J.-P. Depoix, P. Nataf, and A. Vahanian. Feasibility and outcomes of transcatheter aortic valve implantation in high-risk patients with stenotic bicuspid aortic valves. Am. J. Cardiol. 110:877–883, 2012.CrossRefPubMedGoogle Scholar
  18. 18.
    John, D., L. Buellesfeld, S. Yuecel, R. Mueller, G. Latsios, H. Beucher, U. Gerckens, and E. Grube. Correlation of device landing zone calcification and acute procedural success in patients undergoing transcatheter aortic valve implantations with the self-expanding CoreValve prosthesis. JACC Cardiovasc. Interv. 3:233–243, 2010.CrossRefPubMedGoogle Scholar
  19. 19.
    Kiefer, P., J. Seeburger, M. W. Chu, J. Ender, M. Vollroth, T. Noack, F. W. Mohr, and D. M. Holzhey. Reoperative transapical aortic valve implantation for early structural valve deterioration of a SAPIEN XT valve. Ann. Thorac. Surg. 95:2169–2170, 2013.CrossRefPubMedGoogle Scholar
  20. 20.
    Klotz, S., M. Scharfschwerdt, D. Richardt, and H. H. Sievers. Failed valve-in-valve transcatheter aortic valve implantation. JACC Cardiovasc. Interv. 5:591–592, 2012.CrossRefPubMedGoogle Scholar
  21. 21.
    Koos, R., A. H. Mahnken, G. Dohmen, K. Brehmer, R. W. Günther, R. Autschbach, N. Marx, and R. Hoffmann. Association of aortic valve calcification severity with the degree of aortic regurgitation after transcatheter aortic valve implantation. Int. J. Cardiol. 150:142–145, 2011.CrossRefPubMedGoogle Scholar
  22. 22.
    Leber, A. W., M. Kasel, T. Ischinger, U. H. Ebersberger, D. Antoni, M. Schmidt, G. Riess, V. Renz, A. Huber, T. Helmberger, and E. Hoffmann. Aortic valve calcium score as a predictor for outcome after TAVI using the CoreValve revalving system. Int. J. Cardiol. 166:652–657, 2013.CrossRefPubMedGoogle Scholar
  23. 23.
    Leon, M. B., C. R. Smith, M. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, D. L. Brown, P. C. Block, R. A. Guyton, A. D. Pichard, J. E. Bavaria, H. C. Herrmann, P. S. Douglas, J. L. Petersen, J. J. Akin, W. N. Anderson, D. Wang, and S. Pocock. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363:1597–1607, 2010.CrossRefPubMedGoogle Scholar
  24. 24.
    Martin, C., and W. Sun. Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: a fatigue simulation study. J. Biomech. 48:3026–3034, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Martin, C., and W. Sun. Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects. Biomech. Model. Mechanobiol. 12:645–655, 2013.CrossRefPubMedGoogle Scholar
  26. 26.
    Martin, C., and W. Sun. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties. Biomech. Model. Mechanobiol. 13:759–770, 2014.CrossRefPubMedGoogle Scholar
  27. 27.
    Milburn, K., V. Bapat, and M. Thomas. Valve-in-valve implantations: is this the new standard for degenerated bioprostheses? Review of the literature. Clin. Res. Cardiol. 103:1–13, 2014.CrossRefGoogle Scholar
  28. 28.
    Muñoz-García, A. J., J. H. Alonso-Briales, M. F. Jiménez-Navarro, J. Caballero-Borrego, A. J. Domínguez-Franco, I. Rodríguez-Bailón, M. Such-Martínez, J. M. Hernández-García, and E. de Teresa-Galván. Mechanisms, treatment and course of paravalvular aortic regurgitation after percutaneous implantation of the CoreValve aortic prosthesis. Int. J. Cardiol. 149:389–392, 2011.CrossRefPubMedGoogle Scholar
  29. 29.
    Perlman, G. Y., P. Blanke, D. Dvir, G. Pache, T. Modine, M. Barbanti, E. W. Holy, H. Treede, P. Ruile, F.-J. Neumann, C. Gandolfo, F. Saia, C. Tamburino, G. Mak, C. Thompson, D. Wood, J. Leipsic, and J. G. Webb. Bicuspid aortic valve stenosis: favorable early outcomes with a next-generation transcatheter heart valve in a multicenter study. JACC Cardiovasc. Interv. 9:817–824, 2016.CrossRefPubMedGoogle Scholar
  30. 30.
    Schoen, F. J., J. Fernandez, L. Gonzalez-Lavin, and A. Cernaianu. Causes of failure and pathologic findings in surgically removed Ionescu-Shiley standard bovine pericardial heart valve bioprostheses: emphasis on progressive structural deterioration. Circulation 76:618–627, 1987.CrossRefPubMedGoogle Scholar
  31. 31.
    Schoen, F. J., and R. J. Levy. Tissue heart valves: current challenges and future research perspectives. J. Biomed. Mater. Res. 47:439–465, 1999.CrossRefPubMedGoogle Scholar
  32. 32.
    Schultz, C. J., A. Weustink, N. Piazza, A. Otten, N. Mollet, G. Krestin, R. J. van Geuns, P. de Feyter, P. W. J. Serruys, and P. de Jaegere. Geometry and degree of apposition of the CoreValve ReValving system with multislice computed tomography after implantation in patients with aortic stenosis. J. Am. Coll. Cardiol. 54:911–918, 2009.CrossRefPubMedGoogle Scholar
  33. 33.
    Shalabi, A., D. Spiegelstein, L. Sternik, M. S. Feinberg, A. Kogan, S. Levin, B. Orlov, E. Nachum, A. Lipey, and E. Raanani. Sutureless versus stented valve in aortic valve replacement in patients with small annulus. Ann. Thorac. Surg. 102:118–122, 2016.CrossRefPubMedGoogle Scholar
  34. 34.
    Simo, J. C. On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60:153–173, 1987.CrossRefGoogle Scholar
  35. 35.
    Simonato, M., J. Webb, R. Kornowski, A. Vahanian, C. Frerker, H. Nissen, S. Bleiziffer, A. Duncan, J. Rodes-Cabau, G. F. Attizzani, E. Horlick, A. Latib, R. Bekeredjian, M. Barbanti, T. Lefevre, A. Cerillo, J. M. Hernandez, G. Bruschi, K. Spargias, A. Iadanza, S. Brecker, J. H. Palma, A. Finkelstein, M. Abdel-Wahab, P. Lemos, A. S. Petronio, D. Champagnac, J. M. Sinning, S. Salizzoni, M. Napodano, C. Fiorina, A. Marzocchi, M. Leon, and D. Dvir. Transcatheter replacement of failed bioprosthetic valves: large multicenter assessment of the effect of implantation depth on hemodynamics after aortic valve-in-valve. Circ. Cardiovasc. Interv. 9:e003651, 2016.CrossRefPubMedGoogle Scholar
  36. 36.
    Singhal, P., A. Luk, and J. Butany. Bioprosthetic heart valves: impact of implantation on biomaterials. ISRN Biomater. 2013:1–14, 2013.CrossRefGoogle Scholar
  37. 37.
    Smuts, A. N., D. C. Blaine, C. Scheffer, H. Weich, A. F. Doubell, and K. H. Dellimore. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J. Mech. Behav. Biomed. Mater. 4:85–98, 2011.CrossRefPubMedGoogle Scholar
  38. 38.
    Sun W. Biomechanical simulations of heart valve biomaterials. In: Department of Bioengineering. Pittsburgh: University of Pittsburgh, 2003, p. 240.Google Scholar
  39. 39.
    Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127:905–914, 2005.CrossRefPubMedGoogle Scholar
  40. 40.
    Sun, W., E. L. Chaikof, and M. E. Levenston. Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models. J. Biomech. Eng. 130:061003, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sun, W., K. Li, and E. Sirois. Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment. J. Biomech. 43:3085–3090, 2010.CrossRefPubMedGoogle Scholar
  42. 42.
    Trowbridge, E. A., and C. E. Crofts. Pericardial heterograft valves: an assessment of leaflet stresses and their implications for heart valve design. J. Biomech. Eng. 9:345–355, 1987.CrossRefGoogle Scholar
  43. 43.
    Vesely, I. The influence of design on bioprosthetic valve durability. J. Long-Term Eff. Med. Implant. 11:13, 2001.CrossRefGoogle Scholar
  44. 44.
    Watanabe, Y., B. Chevalier, K. Hayashida, T. Leong, E. Bouvier, T. Arai, A. Farge, T. Hovasse, P. Garot, B. Cormier, M.-C. Morice, and T. Lefèvre. Comparison of multislice computed tomography findings between bicuspid and tricuspid aortic valves before and after transcatheter aortic valve implantation. Catheter. Cardiovasc. Interv. 86:323–330, 2015.CrossRefPubMedGoogle Scholar
  45. 45.
    Webb, J. G., and D. Dvir. Transcatheter aortic valve replacement for bioprosthetic aortic valve failure: the valve-in-valve procedure. Circulation 127:2542–2550, 2013.CrossRefPubMedGoogle Scholar
  46. 46.
    Webb, J. G., D. A. Wood, J. Ye, R. Gurvitch, J.-B. Masson, J. Rodés-Cabau, M. Osten, E. Horlick, O. Wendler, E. Dumont, R. G. Carere, N. Wijesinghe, F. Nietlispach, M. Johnson, C. R. Thompson, R. Moss, J. Leipsic, B. Munt, S. V. Lichtenstein, and A. Cheung. Transcatheter valve-in-valve implantation for failed bioprosthetic heart valves. Circulation 121:1848–1857, 2010.CrossRefPubMedGoogle Scholar
  47. 47.
    Willson, A., J. Webb, T. LaBounty, S. Achenbach, R. Moss, M. Wheeler, C. Thompson, J. Min, R. Gurvitch, B. Norgard, S. Toggweiler, R. K. Binder, C. Hague, M. Freeman, S. H. Poulter, R. Poulter, D. Wood, and L. Jonathon. Three-dimensional aortic annular assessment by multidetector computed tomography predicts moderate or severe paravalvular regurgitation after transcatheter aortic valve replacement: a multicenter retrospective analysis. J. Am. Coll. Cardiol. 59:E325, 2012.CrossRefGoogle Scholar
  48. 48.
    Willson, A. B., J. G. Webb, R. Gurvitch, D. A. Wood, S. Toggweiler, R. Binder, M. Freeman, M. Madden, C. Hague, and J. Leipsic. Structural integrity of balloon-expandable stents after transcatheter aortic valve replacement: assessment by multidetector computed tomography. JACC Cardiovasc. Interv. 5:525–532, 2012.CrossRefPubMedGoogle Scholar
  49. 49.
    Zegdi, R., V. Ciobotaru, M. Noghin, G. Sleilaty, A. Lafont, C. Latrémouille, A. Deloche, and J.-N. Fabiani. Is it reasonable to treat all calcified stenotic aortic valves with a valved stent?: Results from a human anatomic study in adults. J. Am. Coll. Cardiol. 51:579–584, 2008.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  1. 1.Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA

Personalised recommendations