Advertisement

Annals of Biomedical Engineering

, Volume 45, Issue 4, pp 873–883 | Cite as

PulmoStent: In Vitro to In Vivo Evaluation of a Tissue Engineered Endobronchial Stent

  • Anja Lena Thiebes
  • Nicola Kelly
  • Caoimhe A. Sweeney
  • Donnacha J. McGrath
  • Johanna Clauser
  • Kathrin Kurtenbach
  • Valentine N. Gesche
  • Weiluan Chen
  • Robbert Jan Kok
  • Ulrich Steinseifer
  • Mark Bruzzi
  • Barry J. O’Brien
  • Peter E. McHugh
  • Stefan JockenhoevelEmail author
  • Christian G. Cornelissen
Article

Abstract

Currently, there is no optimal treatment available for end stage tumour patients with airway stenosis. The PulmoStent concept aims on overcoming current hurdles in airway stenting by combining a nitinol stent with a nutrient-permeable membrane, which prevents tumour ingrowth. Respiratory epithelial cells can be seeded onto the cover to restore mucociliary clearance. In this study, a novel hand-braided dog bone stent was developed, covered with a polycarbonate urethane nonwoven and mechanically tested. Design and manufacturing of stent and cover were improved in an iterative process according to predefined requirements for permeability and mechanical properties and finally tested in a proof of concept animal study in sheep for up to 24 weeks. In each animal two stents were implanted, one of which was cell-seeded by endoscopic spraying in situ. We demonstrated the suitability of this membrane for our concept by glucose transport testing and in vitro culture of respiratory epithelial cells. In the animal study, no migration occurred in any of the twelve stents. There was only mild granulation tissue formation and tissue reaction; no severe mucus plugging was observed. Thus, the PulmoStent concept might be a step forward for palliative treatment of airway stenosis with a biohybrid stent device.

Keywords

Tissue engineering Stent development Airway stenting Animal trial 

Notes

Acknowledgments

We thank the Institute of Laboratory Animal Science of the RWTH Aachen University Hospital headed by Univ.-Prof. Dr. med. René H. Tolba especially Dr. med. vet. Kira Scherer for her advice and support before and during the animal experiments and Ms. Lisa Liebenstund, Ms. Dunja Sieger and Mr. Thaddäus Stopinski for their excellent work during the animal experiments. Furthermore, we thank Ludovic Wiszniewski from Epithelix Sárl in Geneva, Switzerland for cooperation and Ms. Irina Appel for technical assistance with tissue sectioning. This work was supported by the European Union’s Seventh Framework Program (FP7/2007-2013 under Grant Agreement N° NMP3-SL-2012-280915).

References

  1. 1.
    Breitenbucher, A., P. N. Chhajed, M. H. Brutsche, C. Mordasini, D. Schilter, and M. Tamm. Long-term follow-up and survival after Ultraflex stent insertion in the management of complex malignant airway stenoses. Respiration 75:443–449, 2008.CrossRefPubMedGoogle Scholar
  2. 2.
    Epstein, S. K. Late complications of tracheostomy. Respir. Care 50:542–549, 2005.PubMedGoogle Scholar
  3. 3.
    Eurostat. Causes of Death in 2012: Malignant Neoplasms.Google Scholar
  4. 4.
    Fortin, M., P. MacEachern, C. A. Hergott, A. Chee, E. Dumoulin, and A. Tremblay. Self-expandable metallic stents in nonmalignant large airway disease. Can. Respir. J. 22:235–236, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Freitag, L. Airway stents. In: European Respiratory Monograph 48: Interventional Pulmonology, edited by J. Strausz, and C. T. Bolliger. Sheffield: European Respiratory Society, 2010, pp. 190–217.CrossRefGoogle Scholar
  6. 6.
    Gruenert, D. C., W. E. Finkbeiner, and J. H. Widdicombe. Culture and transformation of human airway epithelial cells. Am. J. Physiol. 268:L347–L360, 1995.PubMedGoogle Scholar
  7. 7.
    Jungebluth, P., A. Bader, S. Baiguera, S. Moller, M. Jaus, M. L. Lim, K. Fried, K. R. Kjartansdottir, T. Go, H. Nave, W. Harringer, V. Lundin, A. I. Teixeira, and P. Macchiarini. The concept of in vivo airway tissue engineering. Biomaterials 33:4319–4326, 2012.CrossRefPubMedGoogle Scholar
  8. 8.
    Lemaire, A., W. R. Burfeind, E. Toloza, S. Balderson, R. P. Petersen, D. H. Harpole, Jr, and T. A. D’Amico. Outcomes of tracheobronchial stents in patients with malignant airway disease. Ann. Thorac. Surg. 80:434–437, 2005; ((discussion 437–438)).CrossRefPubMedGoogle Scholar
  9. 9.
    Macchiarini, P., P. Jungebluth, T. Go, M. A. Asnaghi, L. E. Rees, T. A. Cogan, A. Dodson, J. Martorell, S. Bellini, P. P. Parnigotto, S. C. Dickinson, A. P. Hollander, S. Mantero, M. T. Conconi, and M. A. Birchall. Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030, 2008.CrossRefPubMedGoogle Scholar
  10. 10.
    McGrath, E. E., D. Warriner, and P. Anderson. The insertion of self expanding metal stents with flexible bronchoscopy under sedation for malignant tracheobronchial stenosis: a single-center retrospective analysis. Arch. Bronconeumol. 48:43–48, 2012.CrossRefPubMedGoogle Scholar
  11. 11.
    Nadzeyka, I., C. Gabler, D. Erarslan, Y. Safi, and U. Steinseifer. Manufacturing of biocompatible nonwoven structures by using spray atomization of dissolved polymers. Polym. Eng. Sci. 54:867–873, 2014.CrossRefGoogle Scholar
  12. 12.
    Profili, S., A. Manca, C. F. Feo, G. Padua, R. Ortu, G. C. Canalis, and G. B. Meloni. Palliative airway stenting performed under radiological guidance and local Anesthesia. Cardio Vasc. Interv. Radiol. 30:74–78, 2007.CrossRefGoogle Scholar
  13. 13.
    Rodrigues, O. R., H. Minamoto, M. Canzian, A. T. Correia, and F. B. Jatene. Biocompatibility of a new device of self-expandable covered and non-covered tracheal stent: comparative study in rats. Acta Cir. Bras. 28:10–18, 2013.CrossRefPubMedGoogle Scholar
  14. 14.
    Thiebes, A. L., S. Albers, C. Klopsch, S. Jockenhoevel, and C. G. Cornelissen. Spraying respiratory epithelial cells to coat tissue engineered constructs. BioResearch Open Access 4:278–287, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Thiebes, A. L., M. A. Reddemann, J. Palmer, R. Kneer, S. Jockenhoevel, and C. G. Cornelissen. Flexible endoscopic spray application of respiratory epithelial cells as platform technology to apply cells in tubular organs. Tissue Eng. C 22:322–331, 2016.CrossRefGoogle Scholar
  16. 16.
    Weinandy, S., L. Rongen, F. Schreiber, C. Cornelissen, T. C. Flanagan, A. Mahnken, T. Gries, T. Schmitz-Rode, and S. Jockenhoevel. The BioStent: novel concept for a viable stent structure. Tissue Eng. A 18:1818–1826, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Anja Lena Thiebes
    • 1
  • Nicola Kelly
    • 2
  • Caoimhe A. Sweeney
    • 2
  • Donnacha J. McGrath
    • 2
  • Johanna Clauser
    • 3
  • Kathrin Kurtenbach
    • 1
  • Valentine N. Gesche
    • 1
  • Weiluan Chen
    • 4
  • Robbert Jan Kok
    • 4
  • Ulrich Steinseifer
    • 3
  • Mark Bruzzi
    • 2
  • Barry J. O’Brien
    • 2
  • Peter E. McHugh
    • 2
  • Stefan Jockenhoevel
    • 1
    Email author
  • Christian G. Cornelissen
    • 1
    • 5
  1. 1.Department of Biohybrid & Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering, ITA-Institut für Textiltechnik, RWTH Aachen University and at AMIBM Maastricht University, The NetherlandsAachenGermany
  2. 2.Biomechanics Research Centre, Biomedical Engineering, College of Engineering and InformaticsNational University of IrelandGalwayIreland
  3. 3.Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz InstituteRWTH Aachen UniversityAachenGermany
  4. 4.Department of Pharmaceutics, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
  5. 5.Department for Internal Medicine – Section for Pneumology, Medical FacultyRWTH Aachen UniversityAachenGermany

Personalised recommendations