Annals of Biomedical Engineering

, Volume 45, Issue 4, pp 990–1002 | Cite as

Development of a Smart Pump for Monitoring and Controlling Intraocular Pressure

  • Simon A. Bello
  • Sharad Malavade
  • Christopher L. PassagliaEmail author


Animal models of ocular hypertension are important for glaucoma research but come with experimental costs. Available methods of intraocular pressure (IOP) elevation are not always successful, the amplitude and time course of IOP changes are unpredictable and irreversible, and IOP measurement by tonometry is laborious. Here we present a novel system for monitoring and controlling IOP without these limitations. It consists of a cannula implanted in the anterior chamber of the eye, a pressure sensor that continually measures IOP, and a bidirectional pump driven by control circuitry that can infuse or withdraw fluid to hold IOP at user-desired levels. A portable version was developed for tethered use on rats. We show that rat eyes can be cannulated for months without causing significant anatomical or physiological damage although the animal and its eyes freely move. We show that the system measures IOP with <0.7 mmHg resolution and <0.3 mmHg/month drift and can maintain IOP within a user-specified window of desired levels for any duration necessary. We conclude that the system is ready for cage- or bench-side applications. The results lay the foundation for an implantable version that would give glaucoma researchers unprecedented knowledge and control of IOP in rats and potentially larger animals.


Glaucoma Rat Telemetry Eye Implant Closed loop control 



The work was supported by NIH grant R21 EY023376 and a Thomas R. Lee Award from the BrightFocus Foundation. The authors thank Drs. Radouil Tzekov and Xiaolan Tang for assistance with histological processing, Dr. Wilfredo Moreno for consultations with controller design, and Dr. Curtis Margo for evaluating the pathology of implanted eyes. The authors declare the following intellectual interests: U.S. Patents 9022,968 B2 and 9314,375 B1.

Supplementary material

Supplementary material 1 (WMV 4637 kb)


  1. 1.
    Abrams, L. S., S. Vitale, and H. D. Jampel. Comparison of three tonometers for measuring intraocular pressure in rabbits. Investig. Ophthalmol. Vis. Sci. 37:940–944, 1996.Google Scholar
  2. 2.
    Akaishi, T., N. Ishida, A. Shimazaki, H. Hara, and Y. Kuwayama. Continuous monitoring of circadian variations in intraocular pressure by telemetry system throughout a 12-week treatment with timolol maleate in rabbits. J. Ocular Pharmacol. Ther. 21:436–444, 2005.CrossRefGoogle Scholar
  3. 3.
    Akula, J. D., T. L. Favazza, J. A. Mocko, I. Y. Benador, A. L. Asturias, M. S. Kleinman, R. M. Hansen, and A. B. Fulton. The anatomy of the rat eye with oxygen-induced retinopathy. Doc. Ophthalmol. 120:41–50, 2010.CrossRefPubMedGoogle Scholar
  4. 4.
    Asrani, S., R. Zeimer, J. Wilensky, D. Gieser, S. Vitale, and K. Lindenmuth. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J. Glaucoma 9:134–142, 2000.CrossRefPubMedGoogle Scholar
  5. 5.
    Bengtsson, B., M. C. Leske, L. Hyman, and A. Heijl. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology 114:205–209, 2007.CrossRefPubMedGoogle Scholar
  6. 6.
    Berdahl, J. P., M. P. Fautsch, S. S. Stinnett, and R. R. Allingham. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case–control study. Investig. Ophthalmol. Vis. Sci. 49:5412–5418, 2008.CrossRefGoogle Scholar
  7. 7.
    Chauhan, B. C., J. Pan, M. L. Archibald, T. L. LeVatte, M. E. Kelly, and F. Tremblay. Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Investig. Ophthalmol. Vis. Sci. 43:2969–2976, 2002.Google Scholar
  8. 8.
    Downs, J. C., C. F. Burgoyne, W. P. Seigfreid, J. F. Reynaud, N. G. Strouthidis, and V. Sallee. 24-hour IOP telemetry in the nonhuman primate: implant system performance and initial characterization of IOP at multiple timescales. Investig. Ophthalmol. Vis. Sci. 52:7365–7375, 2011.CrossRefGoogle Scholar
  9. 9.
    Fitt, A. D., and G. Gonzalez. Fluid mechanics of the human eye: aqueous humour flow in the anterior chamber. Bull. Math. Biol. 68(1):53–71, 2006.CrossRefPubMedGoogle Scholar
  10. 10.
    Gaasterland, D., and C. Kupfer. Experimental glaucoma in the rhesus monkey. Investig. Ophthalmol. Vis. Sci. 13:455–457, 1974.Google Scholar
  11. 11.
    Ha, D., W. N. de Vries, S. W. John, P. P. Irazoqui, and W. J. Chappell. Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye. Biomed. Microdevices 14:207–215, 2012.CrossRefPubMedGoogle Scholar
  12. 12.
    Kee, C., T. Hong, and K. Choi. A sensitive ocular perfusion apparatus measuring outflow facility. Curr. Eye Res. 16:1198–1201, 1997.CrossRefPubMedGoogle Scholar
  13. 13.
    Leonardi, M., E. M. Pitchon, A. Bertsch, P. Renaud, and A. Mermoud. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 87:433–437, 2009.CrossRefPubMedGoogle Scholar
  14. 14.
    Leske, M. C., A. M. Connell, S. Y. Wu, L. G. Hyman, and A. P. Schachat. Risk factors for open-angle glaucoma: the Barbados eye studyleske. Arch. Ophthalmol. 113:918–924, 1995.CrossRefPubMedGoogle Scholar
  15. 15.
    Li, R., and J. H. Liu. Telemetric monitoring of 24 h intraocular pressure in conscious and freely moving C57BL/6J and CBA/CaJ mice. Mol. Vis. 14:745–749, 2008.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu, J. H., X. Zhang, D. F. Kripke, and R. N. Weinreb. Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Investig. Ophthalmol. Vis. Sci. 44:1586–1590, 2003.CrossRefGoogle Scholar
  17. 17.
    Mansouri, K., F. A. Medeiros, A. Tafreshi, and R. N. Weinreb. Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma. Arch. Ophthalmol. 130:1534–1539, 2012.CrossRefGoogle Scholar
  18. 18.
    Mateijsen, D. J., H. J. Rosingh, H. P. Wit, and F. W. Albers. Perilymphatic pressure measurement in patients with Meniere’s disease. Eur. Arch. Otorhinolaryngol. 258:1–4, 2001.CrossRefPubMedGoogle Scholar
  19. 19.
    McLaren, J. W., R. F. Brubaker, and J. S. Fitzsimon. Continuous measurement of intraocular pressure in rabbits by telemetry. Investig. Ophthalmol. Vis. Sci. 37:966–975, 1996.Google Scholar
  20. 20.
    McNulty, R., H. Wang, R. T. Mathias, B. J. Ortwerth, R. J. Truscott, and S. Bassnett. Regulation of tissue oxygen levels in the mammalian lens. J. Physiol. 559:883–898, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mermoud, A., G. Baerveldt, D. S. Minckler, J. A. Prata, Jr, and N. A. Rao. Aqueous humor dynamics in rats. Graefes Arch. Clin. Exp. Ophthalmol. 234:S198–S203, 1996.CrossRefPubMedGoogle Scholar
  22. 22.
    Moore, C. G., E. C. Johnson, and J. C. Morrison. Circadian rhythm of intraocular pressure in the rat. Curr. Eye Res. 15:185–191, 1996.CrossRefPubMedGoogle Scholar
  23. 23.
    Morrison, J. C., C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson. A rat model of chronic pressure-induced optic nerve damage. Exp. Eye Res. 64:85–96, 1997.CrossRefPubMedGoogle Scholar
  24. 24.
    Nusbaum, D. M., S. M. Wu, and B. J. Frankfort. Elevated intracranial pressure causes optic nerve and retinal ganglion cell degeneration in mice. Exp. Eye Res. 136:38–44, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Quigley, H. A., and E. M. Addicks. Chronic experimental glaucoma in primates. I. Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells. Investig. Ophthalmol. Vis. Sci. 19:126–136, 1980.Google Scholar
  26. 26.
    Ren, R., J. B. Jonas, G. Tian, Y. Zhen, K. Ma, S. Li, H. Wang, B. Li, X. Zhang, and N. Wang. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology 117:259–266, 2010.CrossRefPubMedGoogle Scholar
  27. 27.
    Ruiz-Ederra, J., M. García, M. Hernández, H. Urcola, E. Hernández-Barbáchano, J. Araiz, and E. Vecino. The pig eye as a novel model of glaucoma. Exp. Eye Res. 81:561–569, 2005.CrossRefPubMedGoogle Scholar
  28. 28.
    Salt, A. N., and A. K. Plontke. Endolymphatic hydrops pathophysiology and experimental models. Otolaryngol. Clin. N. Am. 43:971–983, 2010.CrossRefGoogle Scholar
  29. 29.
    Sappington, R. M., B. J. Carlson, S. D. Crish, and D. J. Calkins. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Investig. Ophthalmol. Vis. Sci. 51:207–216, 2010.CrossRefGoogle Scholar
  30. 30.
    Shareef, S. R., E. Garcia-Valenzuela, A. Salierno, J. Walsh, and S. C. Sharma. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp. Eye Res. 61:379–382, 1995.CrossRefPubMedGoogle Scholar
  31. 31.
    Sommer, A. Intraocular pressure and glaucoma. Am. J. Ophthalmol. 107:186–188, 1989.CrossRefPubMedGoogle Scholar
  32. 32.
    Takumida, M., N. Akagi, and M. Anniko. A new animal model for Meniere’s disease. Acta Otolaryngol. 128:263–271, 2008.CrossRefPubMedGoogle Scholar
  33. 33.
    Todani, A., I. Behlau, M. A. Fava, F. Cade, D. G. Cherfan, F. R. Zakka, F. A. Jakobiec, Y. Gao, C. H. Dohlman, and S. A. Melki. Intraocular pressure measurement by radio wave telemetry. Investig. Ophthalmol. Vis. Sci. 52:9573–9580, 2011.CrossRefGoogle Scholar
  34. 34.
    Ueda, J., S. Sawaguchi, T. Hanyu, K. Yaoeda, T. Fukuchi, H. Abe, and H. Ozawa. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn. J. Ophthalmol. 42:337–344, 1998.CrossRefPubMedGoogle Scholar
  35. 35.
    Walter, P., U. Schnakenberg, G. vom Bögel, P. Ruokonen, C. Krüger, S. Dinslage, H. C. Lüdtke Handjery, H. Richter, W. Mokwa, M. Diestelhorst, and G. K. Krieglstein. Development of a completely encapsulated intraocular pressure sensor. Ophthalmic Res. 32:278–284, 2000.CrossRefPubMedGoogle Scholar
  36. 36.
    Weber, A. J., and D. Zelenak. Experimental glaucoma in the primate induced by latex microspheres. J. Neurosci. Methods 111:39–48, 2001.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Simon A. Bello
    • 1
  • Sharad Malavade
    • 2
  • Christopher L. Passaglia
    • 1
    • 2
    Email author
  1. 1.Department of Chemical & Biomedical EngineeringUniversity of South FloridaTampaUSA
  2. 2.Department of OphthalmologyUniversity of South FloridaTampaUSA

Personalised recommendations