Annals of Biomedical Engineering

, Volume 45, Issue 3, pp 619–631 | Cite as

Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae

  • Milan Toma
  • Charles H. BloodworthIV
  • Eric L. Pierce
  • Daniel R. Einstein
  • Richard P. Cochran
  • Ajit P. Yoganathan
  • Karyn S. Kunzelman


The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations.


Chordae tendineae Mitral valve Comprehensive model Fluid-structure interaction Computer simulation Chordal rupture 



This study was supported by a grant from the National Heart Lung and Blood Institute (R01-HL092926) and by a grant from the National Science Foundation Graduate Research Fellowship (DGE-1148903).

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.


  1. 1.
    Amberg, B., S. Romdhani, and T. Vetter. Optimal step nonrigid icp algorithms for surface registration. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE, Piscataway, 2007, pp. 1–8.Google Scholar
  2. 2.
    Anderson, Y., N. Wilson, R. Nicholson, and K. Finucane. Fulminant mitral regurgitation due to ruptured chordae tendinae in acute rheumatic fever. J. Paediatr. Child Health 44(3): 134–137, 2008.CrossRefPubMedGoogle Scholar
  3. 3.
    Chandran, K.B., and H. Kim, “Computational mitral valve evaluation and potential clinical applications. Ann. Biomed. Eng. 43(6): 1348–1362, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cochran, R.P., and K.S. Kunzelman. Effect of papillary muscle position on mitral valve function: relationship to mitral homografts. Ann. Thorac.Surg. 66(Suppl): S155–161, 1998.CrossRefPubMedGoogle Scholar
  5. 5.
    Einstein, D.R., F. DelPin, X. Jiao, A.P. Kuprat, J.P. Carson, K.S. Kunzelman, R.P. Cochran, J.M. Guccione, and M.B. Ratclifee. Fluid-structure interactions of the mitral valve and left heart: Comprehensive strategies, past, present, and future. Int. J. Numer. Methods Biomed. Eng. 26(3-4): 348–380, 2010.CrossRefGoogle Scholar
  6. 6.
    Einstein, D.R., K.S. Kunzelman, P.G. Reinhall, M.A. Nicosia, and R.P. Cochran. The relationship of normal and abnormal microstructural proliferation to the mitral valve closure sound. Trans. ASME 127: 134–147, 2005.Google Scholar
  7. 7.
    Einstein, D.R., P.G. Reinhall, K.S. Kunzelman, and R.P. Cochran. Nonlinear finite element analysis of the mitral valve. J. Heart Valve Dis. 3: 376–385, 2005.Google Scholar
  8. 8.
    Freed, A.D., D.R. Einstein, and I. Vesely. Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4: 100–117, 2005.CrossRefPubMedGoogle Scholar
  9. 9.
    Gabbay, U., and C. Yosefy. The underlying causes of chordae tendinae rupture: a systematic review. Int. J. Cardiol. 143(2): 113–118, 2010.CrossRefPubMedGoogle Scholar
  10. 10.
     Grenadier, E., G. Alpan, and A. Palant. The prevelance of ruptured chordae tendinae in the mitral valve prolapse syndrome. Am. Heart J. 105(4): 603–610, 1983.CrossRefPubMedGoogle Scholar
  11. 11.
    Grinberg, A.R., J.D. Finkielman, D. Pineiro, H. Festa, and C. Cazenave. Rupture of mitral chorda tendinae following blunt chest trauma. Clin. Cardiol. 21: 300–301, 1998.CrossRefPubMedGoogle Scholar
  12. 12.
    Jensen, M.O., A.A. Fontaine, and A.P. Yoganathan. Improved in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall: Three-dimensional force vector measurement system. Ann. Biomed. Eng. 29: 406–412, 2001.CrossRefPubMedGoogle Scholar
  13. 13.
    Jimenez, J.H., D.D. Soerensen, Z. He, J. Ritchie, and A.P. Yoganathan. Mitral valve function and chordal force distribution using a flexible annulus model: An in vitro study. Ann. Biomed. Eng. 33(5): 557–566, 2005.CrossRefPubMedGoogle Scholar
  14. 14.
    Kaymaz, C., N. Ozdemir, and M. Ozkan. Differentiating clinical and echocardiographic characteristics of chordal rupture detected in patients with rheumatic mitral valve disease and floppy mitral valve: impact of the infective endocarditis on chordal rupture. Eur. J. Echocardiogr. 6(2): 117, 2005.CrossRefPubMedGoogle Scholar
  15. 15.
    Kunzelman, K.S., R.P. Cochran, C.J. Chuong, W.S. Ring, E.D. Verier, and R.C. Eberhart. Finite element analysis of the mitral valve. J. Heart Valve Dis. 2: 326–340, 1993.PubMedGoogle Scholar
  16. 16.
    Kunzelman, K.S., R.P. Cochran, C.J. Chuong, W.S. Ring, E.D. Verier, and R.C. Eberhart. Finite element analysis of mitral valve pathology. J. Long Term Eff. Med. Implants 3: 161–179, 1993.Google Scholar
  17. 17.
    Kunzelman, K.S., D.R. Einstein, and R.P. Cochran. Fluid–structure interaction models of the mitral valve: function in normal and pathological states. Phil. Trans. R. Soc. B 362: 1393–1406, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kunzelman, K.S., M.S. Reimink, and R.P. Cochran. Annular dilatation increases stress in the mitral valve and delays coaptation: A finite element computer model. Cardiovasc. Surg. 5: 427–434, 1997.CrossRefPubMedGoogle Scholar
  19. 19.
    Kunzelman, K.S., M.S. Reimink, and R.P. Cochran. Flexible versus rigid ring annuloplasty for mitral valve annular dilation: A finite element model. J. Heart Valve Dis. 7: 108–116, 1998.PubMedGoogle Scholar
  20. 20.
    Kunzelman, K.S., M.S. Reimink, E.D. Verier, and R.P. Cochran. Replacement of mitral valve posterior chordae tendineae with expanded polytetrafluoroethylene suture: a finite element study. J. Card. Surg. 11: 136–145, 1996.CrossRefPubMedGoogle Scholar
  21. 21.
    Lau, K.D., V. Diaz, P. Scambler, and G. Burriesci. Mitral valve dynamics in structural and fluid–structure interaction models. Med. Eng. Phys. 32: 1057–1064, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Liu, P.G.R. and M.B. Liu. Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific Publishing Company, Singapore, 2003.CrossRefGoogle Scholar
  23. 23.
    Maisano, F., A. Redaelli, M. Soncini, E. Votta, L. Arcobasso, and O. Alfieri. An annular prosthesis for the treatment of functional mitral regurgitation: Finite element model analysis of a dog bone–shaped ring prosthesis. Ann. Thorac. Surg. 79(4): 1268–1275, 2005.CrossRefPubMedGoogle Scholar
  24. 24.
    Mansi, T., I. Voigt, B. Georgescu, X. Zheng, E.A. Mengue, M. Hackl, R. Ionasec, T. Noack, J. Seeburger, and D. Comaniciu. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: Application to mitralclip intervention planning. Med. Image Anal. 16: 1330–1346, 2012.CrossRefPubMedGoogle Scholar
  25. 25.
    McCarthy, P.M. A chain is only as strong as its weakest link. J. Thorac. Cardiovasc. Surg., 2016 (Epub ahead of print).Google Scholar
  26. 26.
    Messas, E., J.L. Guerrero, M.D. Handschumachar, C. Conrad, C.-M Chow, S. Sullivan, A.P. Yoganathan, and R.A. Levine. Chordal cutting: A new therapeutic approach for ischemic mitral regurgitation. Circulation 104:1958–1963, 2001.CrossRefPubMedGoogle Scholar
  27. 27.
    Nkomo, V.T., J.M Gardin, T.N Skelton, J.S. Gottdiener, C.G. Scott, and M.E. Sarano. Burden of valvular heart diseases: a population-based study. Lancet 368(9540): 1005–1011, 2006.CrossRefPubMedGoogle Scholar
  28. 28.
    Portugese, S., H. Amital, A. Tenenbaum, Y. Bar-Dayan, Y. Levy, A. Afek, J. Shemesh, and Y. Shoenfeld. Clinical characteristics of ruptured chordae tendineae in hospitalized patients: primary tear versus infective endocarditis. Clin. Cardiol. 21(11): 813–816, 1998.CrossRefPubMedGoogle Scholar
  29. 29.
    Pouch, A.M., P.A. Yushkevich, B.M. Jackson, A.S. Jassaar, M. Vergnat, J.H. Gorman, R.C. Gorman, and C.M. Sehgal. Development of a semi-automated method for mitral valve modeling with medial axis representation using 3d ultrasound. Med. Phys. 39(2): 933–950, 2012.CrossRefPubMedGoogle Scholar
  30. 30.
    Rabbah, J.-P., N. Saikrishnan, and A.P. Yoganathan. A novel lef heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann. Biomed. Eng. 41(2): 305–315, 2013.CrossRefPubMedGoogle Scholar
  31. 31.
    Reimink, M.S., K.S. Kunzelman, and R.P. Cochran. The effect of chordal replacement suture length on function and stresses in repaired mitral valves: A finite element study. J. Heart Valve Dis. 5: 365–375, 1996.PubMedGoogle Scholar
  32. 32.
    Reimink, M.S., K.S. Kunzelman, E.D. Verier, and R.P. Cochran. The effect of anterior chordal replacement on mitral valve function and stresses. ASAIO Trans. 41: M754–M762, 1995.CrossRefGoogle Scholar
  33. 33.
    Rim, Y., S.T. Laing, D.D. McPherson, and H. Kim. Mitral valve repair using ePTFE sutures for ruptured mitral chordae tendineae: A computational simulation study. Ann. Biomed. Eng. 42(1): 139–148, 2014.CrossRefPubMedGoogle Scholar
  34. 34.
    Schievano, S., K.S. Kunzelman, M.A. Nicosia, R.P. Cochran, D.R. Einstein, S. Khambadkone, and P. Bonhoeffer. Percutaneous mitral valve dilatation: Single balloon versus double balloon. a finite element study. J. Heart Valve Dis. 18: 28–34, 2009.PubMedGoogle Scholar
  35. 35.
    Stevanella, M., F. Maffessanti, C.A. Conti, E. Votta, A. Arnoldi, M. Lombardi, O. Parodi, E.G. Caiani, and A. Redaelli. Mitral valve patient-specific finite element modeling from cardiac MRI: Application to an annuloplasty procedure. Cardiovasc. Eng. Technol. 2(2): 66–76, 2011.CrossRefGoogle Scholar
  36. 36.
    Thavendiranathan, P., D. Phelan, P. Collier, J. D. Thomas, S. D. Flamm, and T. H. Marwick. Quantitative assessment of mitral regurgitation: How best to do it. JACC Cardiovasc. Imaging CME 5(11): 1161–1175, 2012.CrossRefGoogle Scholar
  37. 37.
    Toma, M., D.R. Einstein, C.H. Bloodworth IV, R.P. Cochran, A.P. Yoganathan, and K.S. Kunzelman. Fluid-structure interaction and structural analysis using a comprehensive mitral valve model with 3D chordal structure. Int. J. Numer. Methods in Biomed. Eng. 2016 (Epub ahead of print).Google Scholar
  38. 38.
    Toma, M., M.O. Jensen, D.R. Einstein, A.P. Yoganathan, R.P. Cochran, and K.S. Kunzelman. Fluid-structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure. Ann. Biomed. Eng. 44(4): 942–953, 2016.CrossRefPubMedGoogle Scholar
  39. 39.
    Toma, M., M. Oshima, and S. Takagi. Decomposition and parallelization of strongly coupled fluid-structure interaction linear subsystems based on the Q1/P0 discretization. Comput. Struct. 173: 84–94, 2016.CrossRefGoogle Scholar
  40. 40.
    Toma, M., C.H. Bloodworth IV, D.R. Einstein, E.L. Pierce, R.P. Cochran, A.P. Yoganathan, and K.S. Kunzelman. High resolution subject-specific mitral valve imaging and modeling: Experimental & computational models. Biomech. Model. Mechanobiol. 2016 (Epub ahead of print).Google Scholar
  41. 41.
    Votta, E., E.G. Caiani, F. Veronesi, M. Soncini, F.M. Motevecchi, and A. Redaelli. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. Ser. A 366(1879): 3411–3434, 2008.CrossRefGoogle Scholar
  42. 42.
    Votta, E., T.B. Le, M. Stevanella, L. Fusini, E.G. Caiani, A. Redaelli, and F. Sotiropoulos. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46(2): 217–228, 2013.CrossRefPubMedGoogle Scholar
  43. 43.
    Wenk, J.F., Z. Zhang, G. Cheng, D. Malhotra, G.A.-Bolton, M. Burger, T. Suzuki, D.A. Saloner, A.W. Wallace, J.M. Guccione, and M.B. Ratclifee. First finite element model of the left ventricle with mitral valve: Insights into ischemic mitral regurgitation. Ann. Thorac. Surg. 89(5): 1546–1554, 2010.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Milan Toma
    • 1
  • Charles H. BloodworthIV
    • 1
  • Eric L. Pierce
    • 1
  • Daniel R. Einstein
    • 2
  • Richard P. Cochran
    • 3
  • Ajit P. Yoganathan
    • 1
  • Karyn S. Kunzelman
    • 3
  1. 1.Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.Department of Mechanical EngineeringSt. Martin’s UniversityLaceyUSA
  3. 3.Department of Mechanical EngineeringUniversity of MaineOronoUSA

Personalised recommendations