Annals of Biomedical Engineering

, Volume 45, Issue 3, pp 681–694 | Cite as

Mechanically Stable Intraspinal Microstimulation Implants for Human Translation

  • Amirali Toossi
  • Dirk G. Everaert
  • Austin Azar
  • Christopher R. Dennison
  • Vivian K. Mushahwar
Article

Abstract

The goal of this study was to develop stable intraspinal microstimulation (ISMS) implants for use in humans to restore standing and walking after spinal cord injury. ISMS electrically activates locomotor networks within the lumbar region of the spinal cord. In animals, ISMS produced better functional outcomes than those obtained by other interventions, and recent efforts have focused on translating this approach to humans. This study used domestic pigs to: (1) quantify the movements and length changes of the implant region of the spinal cord during spine flexion and extension movements; and (2) measure the forces leading to the dislodgement of the ISMS electrodes. The displacement of the spinal cord implant region was 5.66 ± 0.57 mm relative to the implant fixation point on the spine. The overall length change of the spinal cord implant region was 5.64 ± 0.59 mm. The electrode dislodgment forces were 60.9 ± 35.5 mN. Based on these results, six different coil types were fabricated and their strain relief capacity assessed. When interposed between the electrodes and the stimulator, five coil types successfully prevented the dislodgement of the electrodes. The results of this study will guide the design of mechanically stable ISMS implants for ultimate human use.

Keywords

Intraspinal implant Dislodgment forces Lumbar spine biomechanics Strain relief Coiled lead wire 

Abbreviations

FES

Functional electrical stimulation

FBR

Foreign body response

ISMS

Intraspinal microstimulation

SCI

Spinal cord injury

References

  1. 1.
    Bamford, J. A., R. M. Lebel, K. Parseyan, and V. K. Mushahwar. The fabrication, implantation and stability of intraspinal microwire arrays in the spinal cord of cat and rat. Trans. Neural Syst. Rehabil. Eng. 2016.Google Scholar
  2. 2.
    Bamford, J. A., C. T. Putman, and V. K. Mushahwar. Intraspinal microstimulation preferentially recruits fatigue-resistant muscle fibres and generates gradual force in rat. J. Physiol. 569:873–884, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bamford, J. A., K. G. Todd, and V. K. Mushahwar. The effects of intraspinal microstimulation on spinal cord tissue in the rat. Biomaterials 31:5552–5563, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Biran, R., D. C. Martin, and P. A. Tresco. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J. Biomed. Mater. Res. A 82:169–178, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    Busscher, I., J. J. W. Ploegmakers, G. J. Verkerke, and A. G. Veldhuizen. Comparative anatomical dimensions of the complete human and porcine spine. Eur. Spine J. 19:1104–1114, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cheng, C., J. Kmech, V. K. Mushahwar, and A. L. Elias. Development of surrogate spinal cords for the evaluation of electrode arrays used in intraspinal implants. IEEE Trans. Biomed. Eng. 60:1667–1676, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dennison, C. R., P. M. Wild, D. R. Wilson, and P. A. Cripton. A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements. Meas. Sci. Technol. 19:085201, 2008.CrossRefGoogle Scholar
  8. 8.
    Dennison, C. R., P. M. Wild, D. R. Wilson, and M. K. Gilbart. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints. Meas. Sci. Technol. 21:115803, 2010.CrossRefGoogle Scholar
  9. 9.
    Ersen, A., S. Elkabes, D. S. Freedman, and M. Sahin. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J. Neural Eng. 12:016019, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hachmann, J. T., J. H. Jeong, P. J. Grahn, G. W. Mallory, L. Q. Evertz, A. J. Bieber, D. A. Lobel, K. E. Bennet, K. H. Lee, and J. L. Lujan. Large animal model for development of functional restoration paradigms using epidural and intraspinal stimulation. Plos One 8:e81443, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Harrison, D. E., R. Cailliet, D. D. Harrison, S. J. Troyanovich, and S. O. Harrison. A review of biomechanics of the central nervous system–part II: spinal cord strains from postural loads. J. Manip. Physiol. Ther. 22:322–332, 1999.CrossRefGoogle Scholar
  12. 12.
    Holinski, B. J. Restoring walking after spinal cord injury. 2013. <https://era.library.ualberta.ca/public/view/item/uuid:0e698e79-b16a-4519-baf7-552a49dda767/>.
  13. 13.
    Kim, T., A. Branner, T. Gulati, and S. F. Giszter. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords. J. Neural Eng. 10:045001, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kipke, D. R., R. J. Vetter, J. C. Williams, and J. F. Hetke. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 11:151–155, 2003.CrossRefGoogle Scholar
  15. 15.
    Krompecher, T. Experimental evaluation of rigor mortis V. Effect of various temperatures on the evolution of rigor mortis. Forensic Sci. Int. 17:19–26, 1981.CrossRefPubMedGoogle Scholar
  16. 16.
    Lau, B., L. Guevremont, and V. K. Mushahwar. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 15:273–285, 2007.CrossRefGoogle Scholar
  17. 17.
    Louis, R. Vertebroradicular and vertebromedullar dynamics. Anat. Clin. 3:1–11, 1981.CrossRefGoogle Scholar
  18. 18.
    McConnell, G. C., H. D. Rees, A. I. Levey, C. A. Gutekunst, R. E. Gross, and R. V. Bellamkonda. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J. Neural Eng. 6:056003, 2009.CrossRefPubMedGoogle Scholar
  19. 19.
    Moxon, K. A., S. C. Leiser, G. A. Gerhardt, K. A. Barbee, and J. K. Chapin. Ceramic-based multisite electrode arrays for chronic single-neuron recording. IEEE Trans. Biomed. Eng. 51:647–656, 2004.CrossRefPubMedGoogle Scholar
  20. 20.
    Mushahwar, V. K., D. F. Collins, and A. Prochazka. Spinal cord microstimulation generates functional limb movements in chronically implanted cats. Exp. Neurol. 163:422–429, 2000.CrossRefPubMedGoogle Scholar
  21. 21.
    Mushahwar, V. K., and K. W. Horch. Selective activation of muscle groups in the feline hindlimb through electrical microstimulation of the ventral lumbo-sacral spinal cord. IEEE Trans. Rehabil. Eng. 8:11–21, 2000.CrossRefPubMedGoogle Scholar
  22. 22.
    Nashold, B. S., H. Friedman, J. F. Glenn, J. H. Grimes, W. F. Barry, and R. Avery. Electromicturition in paraplegia. Implantation of a spinal neuroprosthesis. Arch. Surg. Chic. Ill 1960 104:195–202, 1972.Google Scholar
  23. 23.
    Nashold, B. S., J. Grimes, H. Friedman, J. Semans, and R. Avery. Electrical stimulation of the conus medullaris in the paraplegic. A 5-year review. Appl. Neurophysiol. 40:192–207, 1977.PubMedGoogle Scholar
  24. 24.
    Oxland, T. R., R. M. Lin, and M. M. Panjabi. Three-dimensional mechanical properties of the thoracolumbar junction. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 10:573–580, 1992.CrossRefGoogle Scholar
  25. 25.
    Ozawa, H., T. Matsumoto, T. Ohashi, M. Sato, and S. Kokubun. Mechanical properties and function of the spinal pia mater. J. Neurosurg. Spine 1:122–127, 2004.CrossRefPubMedGoogle Scholar
  26. 26.
    Peckham, P. H., and J. S. Knutson. Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 7:327–360, 2005.CrossRefPubMedGoogle Scholar
  27. 27.
    Purves, D., G. J. Augustine, D. Fitzpatrick, L. C. Katz, A. S. LaMantia, J. O. McNamara, and S. M. Williams. The external anatomy of the spinal cord. In: Neuroscience. Sunderland: Sinauer Associates, 2001. <http://www.ncbi.nlm.nih.gov/books/NBK11160/>
  28. 28.
    Rousche, P. J., and R. A. Normann. Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex. J. Neurosci. Methods 82:1–15, 1998.CrossRefPubMedGoogle Scholar
  29. 29.
    Saigal, R., C. Renzi, and V. K. Mushahwar. Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 12:430–440, 2004.CrossRefPubMedGoogle Scholar
  30. 30.
    Sheng, S. R., X. Y. Wang, H. Z. Xu, G. Q. Zhu, and Y. F. Zhou. Anatomy of large animal spines and its comparison to the human spine: a systematic review. Eur. Spine J. 19:46–56, 2010.CrossRefPubMedGoogle Scholar
  31. 31.
    Smit, T. H. The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur. Spine J. 11:137–144, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Smith, J. O. Physical Audio Signal Processing. New York: W3K Publishing, 2010.Google Scholar
  33. 33.
    Snow, S., S. C. Jacobsen, D. L. Wells, and K. W. Horch. Microfabricated cylindrical multielectrodes for neural stimulation. IEEE Trans. Biomed. Eng. 53:320–326, 2006.CrossRefPubMedGoogle Scholar
  34. 34.
    Szentkuti, L., and J. Bruns. Motoneurons of M. semitendinosus in domestic and wild pigs. A horseradish peroxidase and cord-survey study. Anat. Embryol. (Berl.) 167:213–228, 1983.CrossRefGoogle Scholar
  35. 35.
    Ward, M. P., P. Rajdev, C. Ellison, and P. P. Irazoqui. Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res. 1282:183–200, 2009.CrossRefPubMedGoogle Scholar
  36. 36.
    White, A. A., and M. Panjabi. Clinical Biomechanics of the Spine. Philadelphia: Wolters Kluwer, p. 722, 1990.Google Scholar
  37. 37.
  38. 38.
    Wilke, H. J., J. Geppert, and A. Kienle. Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine. Eur. Spine J. 20:1859–1868, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhong, Y., and R. V. Bellamkonda. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res. 1148:15–27, 2007.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Amirali Toossi
    • 1
    • 4
  • Dirk G. Everaert
    • 2
    • 4
  • Austin Azar
    • 3
    • 4
  • Christopher R. Dennison
    • 3
    • 4
  • Vivian K. Mushahwar
    • 1
    • 2
    • 4
  1. 1.Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonCanada
  2. 2.Division of Physical Medicine and Rehabilitation, Department of MedicineUniversity of AlbertaEdmontonCanada
  3. 3.Biomedical Instrumentation Lab, Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada
  4. 4.Alberta Innovates – Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART)EdmontonCanada

Personalised recommendations