Advertisement

Annals of Biomedical Engineering

, Volume 45, Issue 3, pp 554–566 | Cite as

Fluid Dynamics in Rotary Piston Blood Pumps

  • Johannes Wappenschmidt
  • Simon J. Sonntag
  • Martin Buesen
  • Sascha Gross-Hardt
  • Tim Kaufmann
  • Thomas Schmitz-Rode
  • Ruediger Autschbach
  • Andreas Goetzenich
Article

Abstract

Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid–structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.

Keywords

Rotary blood pump Mechanical circulatory support Wankel engine Immersed boundary method Particle image velocimetry SCARABAEUS 

Notes

Acknowledgments

This research project is supported by the START-Program of the Faculty of Medicine, RWTH Aachen University.

Conflict of interest

Some of the authors have a patent pending for seal-less rotary piston drives (DE 10 2014 010 745).

References

  1. 1.
    Abgrall, R., H. Beaugendre, and C. Dobrzynski. An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques. J. Comput. Phys. 257:83–101, 2014. doi: 10.1016/j.jcp.2013.08.052.CrossRefGoogle Scholar
  2. 2.
    Alemu, Y., and D. Bluestein. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9):677–688, 2007. doi: 10.1111/j.1525-1594.2007.00446.x.CrossRefPubMedGoogle Scholar
  3. 3.
    ANSYS Help 16.2.0. Canonsburg, USA.Google Scholar
  4. 4.
    Barth, T. J., and D.C. Jespersen. The design and application of upwind schemes on unstructured meshes. NASA Ames Research Center, Moffett Field, CA, United States 89-0366, 1989.Google Scholar
  5. 5.
    Clinical Study: Early Versus Emergency Left Ventricular Assist Device Implantation in Patients Awaiting Cardiac Transplantation. https://clinicaltrials.gov/ct2/show/NCT02387112?term=NCT+02387112&rank=1.
  6. 6.
    Ferziger, J. H., and M. Perić. Computational Methods for Fluid Dynamics (3rd ed.). Berlin: Springer, 2002; (xiv, 423).CrossRefGoogle Scholar
  7. 7.
    Fraser, K. H., T. Zhang, M. E. Taskin, B. P. Griffith, and Z. J. Wu. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J. Biomech. Eng. 134(8):081002, 2012. doi: 10.1115/1.4007092.CrossRefPubMedGoogle Scholar
  8. 8.
    Global Status Report on Noncommunicable Diseases 2014. WHO Library Cataloguing-in-Publication Data. Geneva: World Health Organization, 2014, 301 pp. http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf
  9. 9.
    Grinstein, F. F., L. G. Margolin, and W. Rider (eds.). Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge: Cambridge University Press, 2007; (8 pp).Google Scholar
  10. 10.
    Gronskis, A., and G. Artana. A simple and efficient direct forcing immersed boundary method combined with a high order compact scheme for simulating flows with moving rigid boundaries. Comput. Fluids 124:86–104, 2016. doi: 10.1016/j.compfluid.2015.10.016.CrossRefGoogle Scholar
  11. 11.
    Joyce, D. L., L. D. Joyce, and M. Loebe. Mechanical Circulatory Support: Principles and Applications (1st ed.). New York: McGraw-Hill Professional, 2012; (xv, 253).Google Scholar
  12. 12.
    Kirklin, J. K., D. C. Naftel, F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, S. L. Myers, M. A. Miller, J. T. Baldwin, and J. B. Young. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 34(12):1495–1504, 2015. doi: 10.1016/j.healun.2015.10.003.CrossRefPubMedGoogle Scholar
  13. 13.
    Margreiter, R., W. Schwab, G. Klima, J. Koiler, M. Baum, H. Dietrich, J. Hager, and A. Konigsrainer. Rotacor: a new rotary blood pump. ASAIO Trans. 36(3):M281–M284, 1990.PubMedGoogle Scholar
  14. 14.
    Mesana, T., N. Mitsui, J. Trinkl, J. -L. Y. Demunck, P. J. Havlik, and J. R. Montiès. First significant animal survival with a Wankel-type left ventricular assist device, 37th ed.: ASAIO Trans (0889-7190 (Linking)):M166–M168, 1991:37(3).Google Scholar
  15. 15.
    Moazami, N., W. P. Dembitsky, R. Adamson, R. J. Steffen, E. G. Soltesz, R. C. Starling, and K. Fukamachi. Does pulsatility matter in the era of continuous-flow blood pumps? J. Heart Lung Transplant. 34(8):999–1004, 2015. doi: 10.1016/j.healun.2014.09.012.CrossRefPubMedGoogle Scholar
  16. 16.
    Monties, J. R. P., and P. Havlik. KUENSTLICHES HERZ. DE Patent DE2819851 (A1), 9 November 1978.Google Scholar
  17. 17.
    Shah, N., V. Agarwal, N. Patel, A. Deshmukh, A. Chothani, J. Garg, A. Badheka, M. Martinez, N. Islam, and R. Freudenberger. National trends in utilization, mortality, complications, and cost of care after left ventricular assist device implantation from 2005 to 2011. Ann. Thorac. Surg. 101(4):1477–1484, 2016. doi: 10.1016/j.athoracsur.2015.09.013.CrossRefPubMedGoogle Scholar
  18. 18.
    Transonic Systems Inc. Research Flowmeters Manual TN#94 Frequency Rev.7-03.Google Scholar
  19. 19.
    Wappenschmidt, J., R. Autschbach, U. Steinseifer, T. Schmitz-Rode, R. Margreiter, G. Klima, and A. Goetzenich. Rotary piston blood pumps: past developments and future potential of a unique pump type. Expert Rev. Med. Devices 2016. doi: 10.1080/17434440.2016.1207522.PubMedGoogle Scholar
  20. 20.
    Wappenschmidt, J. F. W. G. S., A. F. W. Goetzenich, R. Autschbach, and U. Steinseifer. Rotationskolbenpumpe. DE Patent DE102014010745 (A1), 11 February 2016.Google Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  1. 1.Institute of Applied Medical EngineeringHelmholtz-Institute RWTH Aachen UniversityAachenGermany
  2. 2.Department of Thoracic and Cardiovascular SurgeryRWTH Aachen University HospitalAachenGermany

Personalised recommendations