Annals of Biomedical Engineering

, Volume 44, Issue 12, pp 3593–3605 | Cite as

CareToy: Stimulation and Assessment of Preterm Infant’s Activity Using a Novel Sensorized System

  • Andraž Rihar
  • Giuseppina Sgandurra
  • Elena Beani
  • Francesca Cecchi
  • Jure Pašič
  • Giovanni Cioni
  • Paolo Dario
  • Matjaž Mihelj
  • Marko Munih


Early intervention programs aim at improving cognitive and motor outcomes of preterm infants. Intensive custom-tailored training activities are usually accompanied by assessment procedures, which have shortcomings, such as subjectivity, complex setups, and need for structured environments. A novel sensorized system, called CareToy, was designed to provide stimulation in the form of goal-directed activity training scenarios and motor pattern assessment of main developmental milestones, such as rolling activity, grasping, and postural stability. A group of 28 differently skilled preterm infants were enrolled. Acquired measurement data were analysed with dedicated sensor data processing algorithms, along with clinical evaluation of motor ability. High correlation among technically determined parameters and Alberta Infant Motor Scale values was determined by Pearson correlation coefficients. Due to good accuracy and possibility of single motor skill subfield analysis, results confirm system suitability for motor ability assessment. Statistical analysis of inter-motor ability group and inter-training goal data comparisons demonstrate system’s appropriateness for goal-directed activity stimulation. The proposed system has evident potential of being an important contribution to the field of infant motor development assessment, expanding accessibility of early intervention programs and affecting rehabilitation effectiveness of preterm infants.


Early intervention Motor development Goal-directed activity Sensor data-based motor ability evaluation Clinical assessment scales 



Alberta infant motor scale




Autism spectrum disorders


Ages & stages questionnaire® Third Edition


Central nervous system




Early intervention




Information and communication technology


Wireless magneto-inertial measurement unit


Intra-ventricular haemorrhage




Neurodevelopmental disorders


Periventricular leukomalacia




Unscented Kalman filter


  1. 1.
    Adde, L., M. Rygg, K. Lossius, G. K. Øberg, and R. Støen. General movement assessment: Predicting cerebral palsy in clinical practise. Early Hum. Dev. 83(1):13–18, 2007.CrossRefPubMedGoogle Scholar
  2. 2.
    Allanson, J. E., K. W. Gripp, and A. M. Slavotinek. Handbook of Physical Measurements. New York: Oxford University Press, p. 520, 2007.Google Scholar
  3. 3.
    Allievi, A. G., T. Arichi, A. L. Gordon, and E. Burdet. Technology-aided assessment of sensorimotor function in early infancy. Front. Neurol. 5(197):1–10, 2014.Google Scholar
  4. 4.
    Benzies, K. M., J. E. Magill-Evans, K. A. Hayden, and M. Ballantyne. Key components of early intervention programs for preterm infants and their parents: A systematic review and meta-analysis. BMC Pregnancy Childbirth 13(Suppl. 1):S10, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Beravs, T., J. Podobnik, and M. Munih. Three-axial accelerometer calibration using Kalman filter covariance matrix for online estimation of optimal sensor orientation. IEEE Trans. Instrum. Meas. 61(9):2501–2511, 2012.CrossRefGoogle Scholar
  6. 6.
    Blencowe, H., S. Cousens, M. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. V. Garcia, S. Rohde, L. Say, and J. E. Lawn. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379(9832):2162–2172, 2012.CrossRefPubMedGoogle Scholar
  7. 7.
    Campolo, D., C. Laschi, F. Keller, and E. Guglielmelli. A mechatronic platform for early diagnosis of neurodevelopmental disorders. Adv. Robot. 21(10):1131–1150, 2007.CrossRefGoogle Scholar
  8. 8.
    Campolo, D., F. Taffoni, D. Formica, J. Iverson, L. Sparaci, F. Keller, and E. Guglielmelli. Embedding inertial-magnetic sensors in everyday objects: Assessing spatial cognition in children. J. Integr. Neurosci. 11(1):103–116, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cecchi, F., G. Sgandurra, M. Mihelj, L. Mici, J. Zhang, M. Munih, G. Cioni, C. Laschi, P. Dario and the CareToy Consortium. CareToy: an intelligent baby gym for intervention at home in infants at risk for Neurodevelopmental Disorders. IEEE Robotics Automation Magazine, in press.Google Scholar
  10. 10.
    Cioni, G., E. Inguaggiato, and G. Sgandurra. Early intervention in neurodevelopmental disorders: Underlying neural mechanism. Dev. Med. Child Neurol. 58(S4):61–66, 2016.CrossRefPubMedGoogle Scholar
  11. 11.
    Cioni, G., and G. Sgandurra. Normal psychomotor development. Handb. Clin. Neurol. 111:3–15, 2013.CrossRefPubMedGoogle Scholar
  12. 12.
    Darrah, J., M. Piper, and M. J. Watt. Assessment of gross motor skills of at-risk infants: Predictive validity of the Alberta Infant Motor Scale. Dev. Med. Child Neurol. 40(7):485–491, 1998.CrossRefPubMedGoogle Scholar
  13. 13.
    Deffeyes, J. E., R. T. Harbourne, A. Kyvelidou, W. A. Stuberg, and N. Stergiou. Nonlinear analysis of sitting postural sway indicates developmental delay in infants. Clin. Biomech. 24(7):564–570, 2009.CrossRefGoogle Scholar
  14. 14.
    Del Maestro, M., F. Cecchi, S. M. Serio, C. Laschi, and P. Dario. Sensing device for measuring infants’ grasping actions. Sens. Actuators A Phys. 165(2):155–163, 2011.CrossRefGoogle Scholar
  15. 16.
    Doyle, L. W. Evaluation of neonatal intensive care for extremely low birth weight infants in Victoria over two decades: I. Effectiveness. Pediatrics 113(3, Pt. 1):505–509, 2004.CrossRefPubMedGoogle Scholar
  16. 17.
    Dusing, S. C., A. Kyvelidou, V. S. Mercer, and N. Stergiou. Infants born preterm exhibit different patterns of center-of-pressure movement than infants born at full term. Phys. Ther. 89(12):1354–1362, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 18.
    Dusing, S., V. Mercer, B. Yu, M. Reilly, and D. Thorpe. Trunk position in supine of infants born preterm and at term: an assessment using a computerized pressure mat. Pediatr. Phys. Ther. 17(1):2–10, 2005.CrossRefPubMedGoogle Scholar
  18. 19.
    Gajdosik, R. L., and R. W. Bohannon. Clinical measurement of range of motion: review of goniometry emphasizing reliability and validity. Phys. Ther. 67(12):1867–1872, 1987.PubMedGoogle Scholar
  19. 20.
    Gima, H., S. Ohgi, S. Morita, H. Karasuno, T. Fujiwara, and K. Abe. A dynamical system analysis of the development of spontaneous lower extremity movements in newborn and young infants. J. Physiol. Anthropol. 30(5):179–186, 2010.CrossRefGoogle Scholar
  20. 21.
    Jeng, S., L. Chen, and K. Yau. Kinematic analysis of kicking movements in preterm infants with very low birth weight and full-term infants. Phys. Ther. 82(2):148–159, 2002.PubMedGoogle Scholar
  21. 22.
    Karch, D., K. S. Kang, K. Wochner, H. Philippi, M. Hadders-Algra, J. Pitez, and H. Dickhaus. Kinematic assessment of stereotypy in spontaneous movements in infants. Gait Posture 36(2):307–311, 2012.CrossRefPubMedGoogle Scholar
  22. 23.
    Karch, D., K. S. Kim, K. Wochner, J. Pietz, H. Dickhaus, and H. Philippi. Quantification of the segmental kinematics of spontaneous infant movements. J. Biomech. 41(13):2860–2867, 2008.CrossRefPubMedGoogle Scholar
  23. 24.
    Kyvelidou, A., R. T. Harbourne, V. K. Shostrom, and N. Stergiou. Reliability of center of pressure measures for assessing the development of sitting postural control in infants with or at risk of cerebral palsy. Arch. Phys. Med. Rehab. 91(10):1593–1601, 2010.CrossRefGoogle Scholar
  24. 25.
    Lee, H. M., and J. C. Galloway. Early intensive postural and movement training advances head control in very young infants. Phys. Ther. 92(7):935–947, 2012.CrossRefPubMedGoogle Scholar
  25. 26.
    Lundqvist-Persson, C., G. Lau, P. Nordin, E. Bona, and K. G. Sabel. Preterm infants’ early developmental status is associated with later developmental outcome. Acta Paediatr. 101(2):172–178, 2012.CrossRefPubMedGoogle Scholar
  26. 27.
    Meinecke, L., N. Breitbach-Faller, C. Bartz, R. Damen, G. Rau, and C. Disselhorst-Klug. Movement analysis in the early detection of newborns at risk for developing spasticity due to infantile cerebral palsy. Hum. Mov. Sci. 25(2):125–144, 2006.CrossRefPubMedGoogle Scholar
  27. 28.
    Morgan, C., I. Novak, and N. Badawi. Enriched environments and motor outcomes in cerebral palsy: systematic review and meta-analysis. Pediatrics 132(3):e735–746, 2013.CrossRefPubMedGoogle Scholar
  28. 29.
    Muir, S. W., C. L. Corea, and L. Beaupre. Evaluating change in clinical status: Reliability and measures of agreement for the assessment of glenohumeral range of motion. North Am. J. Sports Phys. Ther. 5:98–110, 2010.Google Scholar
  29. 30.
    Norman, D. A. Affordance, conventions, and design. Interactions 6(3):38–43, 1999.CrossRefGoogle Scholar
  30. 31.
    Novak, I. A magical moment in research translation: Strategies for providing high intensity bimanual therapy. Dev. Med. Child Neurol. 55(6):491, 2013.CrossRefPubMedGoogle Scholar
  31. 32.
    Ohgi, S., S. Morita, K. K. Loo, and C. Mizuike. Time series analysis of spontaneous upper extremity movements of premature infants with brain injuries. Phys. Ther. 88(9):1022–1033, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 33.
    Park, E. S., J. W. Joo, S. A. Kim, D. W. Rha, and S. J. Jung. Reliability and validity of the upper limb Physician’s rating scale in children with cerebral palsy. Yonsei Med. J. 56(1):271–276, 2015.CrossRefPubMedGoogle Scholar
  33. 34.
    Passetti, G., F. Cecchi, I. Baldoli, G. Sgandurra, E. Beani, G. Cioni, C. Laschi, and P. Dari (2015). Sensorized toys for measuring manipulation capabilities of infants at home. In IEEE 37th International Conference on Engineering in Medicine and Biology Society (EMBC) (pp. 7390–7393).Google Scholar
  34. 35.
    Piper, M. C., and J. Darrah. Motor Assessment of the Developing Infant. Pennsylvania: W.B. Saunders Company, 1994.Google Scholar
  35. 36.
    Pratesi, A., F. Cecchi, E. Beani, G. Sgandurra, G. Cioni, C. Laschi, and P. Dario. A new system for quantitative evaluation of infant gaze capabilities in a wide visual field. Biomed. Eng. Online 14(83):1–16, 2015.Google Scholar
  36. 37.
    Prieto, T. E., J. B. Myklebust, R. G. Hoffmann, E. G. Lovett, and B. M. Myklebust. Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 43:956–966, 1996.CrossRefPubMedGoogle Scholar
  37. 38.
    Rihar, A., M. Mihelj, J. Pašič, J. Kolar, and M. Munih. Infant trunk posture and arm movement assessment using pressure mattress, inertial and magnetic measurement units (IMUs). J. Neuroeng. Rehabil. 11(1):133, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 39.
    Serio, S. M., F. Cecchi, T. Assaf, C. Laschi, and P. Dario. Design and development of a sensorized wireless toy for measuring infants’ manual actions. IEEE Trans. Neural Syst. Rehabil. 21(3):444–453, 2013.CrossRefGoogle Scholar
  39. 40.
    Sgandurra, G., L. Bartalena, F. Cecchi, G. Cioni, M. Giampietri, G. Greisen, A. Herskind, E. Inguaggiato, J. Lorentzen, J. B. Nielsen, M. Orlando, and P. Dario. A pilot study on early home-based intervention through an intelligent baby gym (CareToy) in preterm infants. Res. Dev. Disabil. 53–54:32–42, 2016.CrossRefPubMedGoogle Scholar
  40. 41.
    Sgandurra, G., L. Bartalena, G. Cioni, G. Greisen, A. Herskind, E. Inguaggiato, J. Lorentzen, J. B. Nielsen, E. Sicola, and CareToy Consortium. Home-based, early intervention with mechatronic toys for preterm infants at risk of neurodevelopmental disorders (CARETOY): A RCT protocol. BMC Pediatr. 14(1):268, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 42.
    Sgandurra, G., F. Cecchi, S. M. Serio, M. Del Maestro, C. Laschi, P. Dario, and G. Cioni. Longitudinal study of unimanual actions and grasping forces during infancy. Infant Behav. Dev. 35(2):205–214, 2012.CrossRefPubMedGoogle Scholar
  42. 43.
    Spittle, A., J. Orton, P. Anderson, R. Boyd, and L.w Doyle. Early developmental intervention programmes post-hospital discharge to prevent motor and cognitive impairments in preterm infants. Cochrane Database Syst. Rev 12:CD005495, 2012.PubMedGoogle Scholar
  43. 44.
    Squires, J., and D. Bricker. Ages & stages questionnaires®, Third Edition. (ASQ-3TM). A parent-completed child-monitoring system. Baltimore: Paul Brookes, 2009.Google Scholar
  44. 15.
    Van Der Merwe, R. (2004). Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. PhD Thesis. Oregon Health Science University, Portland, OR.Google Scholar
  45. 45.
    Vega-Barbas, M., I. Pau, J. Ferreira, E. Lebis, and F. Seoane. Utilizing smart textiles-enabled sensorized toy and playful interactions for assessment of psychomotor development on children. J. Sensors 2015. doi:10.1258/jtt.2010.091108.Google Scholar
  46. 46.
    Westeyn, T. L., G. D. Abowd, T. E. Starner, J. M. Johnson, P. W. Presti, and K. A. Weaver. Monitoring children’s developmental progress using augmented toys and activity recognition. Pers. Ubiq. Comp. 16(2):169–191, 2012.CrossRefGoogle Scholar
  47. 47.
    World Health Organization, Accessed on 12.1.2016.

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Andraž Rihar
    • 1
  • Giuseppina Sgandurra
    • 2
  • Elena Beani
    • 2
  • Francesca Cecchi
    • 3
  • Jure Pašič
    • 1
  • Giovanni Cioni
    • 2
    • 4
  • Paolo Dario
    • 3
  • Matjaž Mihelj
    • 1
  • Marko Munih
    • 1
  1. 1.Laboratory of Robotics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.IRCCS Fondazione Stella MarisPisaItaly
  3. 3.The BioRobotics Institute, Scuola Superiore Sant’ AnnaPisaItaly
  4. 4.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly

Personalised recommendations