Annals of Biomedical Engineering

, Volume 44, Issue 6, pp 2020–2035 | Cite as

Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine

Emerging Trends in Biomaterials Research

Abstract

Carbon nanomaterials such as carbon nanotubes and graphene have gained significant interest in the fields of materials science, electronics and biomedicine due to their interesting physiochemical properties. Typically these carbon nanomaterials have been dispersed in polymeric matrices at low concentrations to improve the functional properties of nanocomposites employed as two-dimensional (2D) substrates or three-dimensional (3D) porous scaffolds for tissue engineering applications. There has been a growing interest in the assembly of these nanomaterials into 2D and 3D architectures without the use of polymeric matrices, surfactants or binders. In this article, we review recent advances in the development of 2D or 3D all-carbon assemblies using carbon nanotubes or graphene as nanoscale building-block biomaterials for tissue engineering and regenerative medicine applications.

Keywords

Carbon nanotubes Graphene Two-dimensional Coatings Three-dimensional Foams Scaffolds Tissue engineering Regenerative medicine 

References

  1. 1.
    Aryaei, A., A. H. Jayatissa, and A. C. Jayasuriya. The effect of graphene substrate on osteoblast cell adhesion and proliferation. J. Biomed. Mater. Res. Part A 102(9):3282–3290, 2014.CrossRefGoogle Scholar
  2. 2.
    Bhunia, S. K., A. Saha, A. R. Maity, S. C. Ray, and N. R. Jana. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 3:1473, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Boyan, B. D., T. W. Hummert, D. D. Dean, and Z. Schwartz. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2):137–146, 1996.CrossRefPubMedGoogle Scholar
  4. 4.
    Buser, D., R. Schenk, S. Steinemann, J. Fiorellini, C. Fox, and H. Stich. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J. Biomed. Mater. Res. 25(7):889–902, 1991.CrossRefPubMedGoogle Scholar
  5. 5.
    Cassell, A. M., J. A. Raymakers, J. Kong, and H. Dai. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103(31):6484–6492, 1999.CrossRefGoogle Scholar
  6. 6.
    Cellot, G., E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, and D. Scaini. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol. 4(2):126–133, 2009.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen, F., W. Lam, C. Lin, G. Qiu, Z. Wu, K. Luk, and W. Lu. Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J. Biomed. Mater. Res. B 82(1):183–191, 2007.CrossRefGoogle Scholar
  8. 8.
    Chen, H., M. B. Müller, K. J. Gilmore, G. G. Wallace, and D. Li. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20(18):3557–3561, 2008.CrossRefGoogle Scholar
  9. 9.
    Chen, Z., W. Ren, L. Gao, B. Liu, S. Pei, and H.-M. Cheng. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6):424–428, 2011.CrossRefPubMedGoogle Scholar
  10. 10.
    Chowdhury, S. M., G. Lalwani, K. Zhang, J. Y. Yang, K. Neville, and B. Sitharaman. Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials 34(1):283–293, 2013.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Correa-Duarte, M. A., N. Wagner, J. Rojas-Chapana, C. Morsczeck, M. Thie, and M. Giersig. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett. 4(11):2233–2236, 2004.CrossRefGoogle Scholar
  12. 12.
    Crowder, S. W., D. Prasai, R. Rath, D. A. Balikov, H. Bae, K. I. Bolotin, and H.-J. Sung. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dikin, D. A., S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff. Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460, 2007.CrossRefPubMedGoogle Scholar
  14. 14.
    Du, D., Y. Yang, and Y. Lin. Graphene-based materials for biosensing and bioimaging. MRS Bull. 37(12):1290–1296, 2012.CrossRefGoogle Scholar
  15. 15.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.CrossRefPubMedGoogle Scholar
  16. 16.
    Fabbro, A., A. Villari, J. Laishram, D. Scaini, F. M. Toma, A. Turco, M. Prato, and L. Ballerini. Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs. ACS Nano 6(3):2041–2055, 2012.CrossRefPubMedGoogle Scholar
  17. 17.
    Fan, L., C. Feng, W. Zhao, L. Qian, Y. Wang, and Y. Li. Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate. Nano Lett. 12(7):3668–3673, 2012.CrossRefPubMedGoogle Scholar
  18. 18.
    Farshid, B., G. Lalwani, and B. Sitharaman. In vitro cytocompatibility of one-dimensional and two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites. J. Biomed. Mater. Res. Part A 103(7):2309–2321, 2015.CrossRefGoogle Scholar
  19. 19.
    Feng, L., S. Zhang, and Z. Liu. Graphene based gene transfection. Nanoscale 3(3):1252–1257, 2011.CrossRefPubMedGoogle Scholar
  20. 20.
    Gähwiler, B. Organotypic cultures of neural tissue. Trends Neurosci. 11(11):484–489, 1988.CrossRefPubMedGoogle Scholar
  21. 21.
    Geng, H.-Z., K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129(25):7758–7759, 2007.CrossRefPubMedGoogle Scholar
  22. 22.
    Goenka, S., V. Sant, and S. Sant. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173:75–88, 2014.CrossRefPubMedGoogle Scholar
  23. 23.
    Green, D. E., J. P. Longtin, and B. Sitharaman. The effect of nanoparticle-enhanced photoacoustic stimulation on multipotent marrow stromal cells. ACS Nano 3(8):2065–2072, 2009.CrossRefPubMedGoogle Scholar
  24. 24.
    Griffith, L. G., and G. Naughton. Tissue engineering–current challenges and expanding opportunities. Science 295(5557):1009–1014, 2002.CrossRefPubMedGoogle Scholar
  25. 25.
    Harada, S.-I., and G. A. Rodan. Control of osteoblast function and regulation of bone mass. Nature 423(6937):349–355, 2003.CrossRefPubMedGoogle Scholar
  26. 26.
    Harrison, B. S., and A. Atala. Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353, 2007.CrossRefPubMedGoogle Scholar
  27. 27.
    Hong, D., K. Bae, S. Yoo, K. Kang, B. Jang, J. Kim, S. Kim, S. Jeon, Y. Nam, and Y. G. Kim. Generation of cellular micropatterns on a single-layered graphene film. Macromol. Biosci. 14(3):314–319, 2014.CrossRefPubMedGoogle Scholar
  28. 28.
    Jang, E. Y., T. J. Kang, H. W. Im, D. W. Kim, and Y. H. Kim. Single-walled carbon-nanotube networks on large-area glass substrate by the dip-coating method. Small 4(12):2255–2261, 2008.CrossRefPubMedGoogle Scholar
  29. 29.
    Kanakia, S., J. D. Toussaint, S. M. Chowdhury, G. Lalwani, T. Tembulkar, T. Button, K. R. Shroyer, W. Moore, and B. Sitharaman. Physicochemical characterization of a novel graphene-based magnetic resonance imaging contrast agent. Int. J. Nanomed. 8:2821, 2013.Google Scholar
  30. 30.
    Kim, K. S., Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710, 2009.CrossRefPubMedGoogle Scholar
  31. 31.
    Kostarelos, K., A. Bianco, and M. Prato. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol. 4(10):627–633, 2009.CrossRefPubMedGoogle Scholar
  32. 32.
    Kotchey, G. P., B. L. Allen, H. Vedala, N. Yanamala, A. A. Kapralov, Y. Y. Tyurina, J. Klein-Seetharaman, V. E. Kagan, and A. Star. The enzymatic oxidation of graphene oxide. ACS Nano 5(3):2098–2108, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kroustalli, A. A., S. N. Kourkouli, and D. D. Deligianni. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes. Ann. Biomed. Eng. 41(12):2655–2665, 2013.CrossRefPubMedGoogle Scholar
  34. 34.
    Ku, S. H., M. Lee, and C. B. Park. Carbon-based nanomaterials for tissue engineering. Adv. Healthc. Mater. 2(2):244–260, 2013.CrossRefPubMedGoogle Scholar
  35. 35.
    Ku, S. H., and C. B. Park. Myoblast differentiation on graphene oxide. Biomaterials 34(8):2017–2023, 2013.CrossRefPubMedGoogle Scholar
  36. 36.
    Lalwani, G., X. Cai, L. Nie, L. V. Wang, and B. Sitharaman. Graphene-based contrast agents for photoacoustic and thermoacoustic tomography. Photoacoustics 1(3):62–67, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lalwani, G., A. Gopalan, M. D’Agati, J. Srinivas Sankaran, S. Judex, Y. X. Qin, and B. Sitharaman. Porous three dimensional carbon nanotube scaffolds for tissue engineering. J. Biomed. Mater. Res. Part A 103(10):3212–3225, 2015.CrossRefGoogle Scholar
  38. 38.
    Lalwani, G., A. M. Henslee, B. Farshid, L. Lin, F. K. Kasper, Y.-X. Qin, A. G. Mikos, and B. Sitharaman. Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules 14(3):900–909, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lalwani, G., A. M. Henslee, B. Farshid, P. Parmar, L. Lin, Y.-X. Qin, F. K. Kasper, A. G. Mikos, and B. Sitharaman. Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering. Acta Biomater. 9(9):8365–8373, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lalwani, G., A. T. Kwaczala, S. Kanakia, S. C. Patel, S. Judex, and B. Sitharaman. Fabrication and characterization of three-dimensional macroscopic all-carbon scaffolds. Carbon 2013(53):90–100, 2013.CrossRefGoogle Scholar
  41. 41.
    Lalwani, G., and B. Sitharaman. Multifunctional fullerene-and metallofullerene-based nanobiomaterials. Nano LIFE 3(3):1342003, 2013.CrossRefGoogle Scholar
  42. 42.
    Lalwani, G., J. L. Sundararaj, K. Schaefer, T. Button, and B. Sitharaman. Synthesis, characterization, in vitro phantom imaging, and cytotoxicity of a novel graphene-based multimodal magnetic resonance imaging-X-ray computed tomography contrast agent. J. Mater. Chem. B 2(22):3519–3530, 2014.CrossRefGoogle Scholar
  43. 43.
    Lalwani, G., W. Xing, and B. Sitharaman. Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. J. Mater. Chem. B 2(37):6354–6362, 2014.CrossRefGoogle Scholar
  44. 44.
    Lee, W. C., C. H. Y. X. Lim, H. Shi, L. A. L. Tang, Y. Wang, C. T. Lim, and K. P. Loh. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9):7334–7341, 2011.CrossRefPubMedGoogle Scholar
  45. 45.
    Li, X., W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314, 2009.CrossRefPubMedGoogle Scholar
  46. 46.
    Li, C., and G. Shi. Three-dimensional graphene architectures. Nanoscale 4(18):5549–5563, 2012.CrossRefPubMedGoogle Scholar
  47. 47.
    Li, N., Q. Zhang, S. Gao, Q. Song, R. Huang, L. Wang, L. Liu, J. Dai, M. Tang, and G. Cheng. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. 3:1604, 2013.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Liu, J., L. Cui, and D. Losic. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9(12):9243–9257, 2013.CrossRefPubMedGoogle Scholar
  49. 49.
    López-Dolado, E., A. González-Mayorga, M. T. Portolés, M. J. Feito, M. L. Ferrer, F. del Monte, M. C. Gutiérrez, and M. C. Serrano. Subacute tissue response to 3D graphene oxide scaffolds implanted in the injured rat spinal cord. Adv. Healthc. Mater. 4(12):1861–1868, 2015.CrossRefPubMedGoogle Scholar
  50. 50.
    Lysaght, M. J., and J. Reyes. The growth of tissue engineering. Tissue Eng. 7(5):485–493, 2001.CrossRefPubMedGoogle Scholar
  51. 51.
    McKay, W. F., S. M. Peckham, and J. M. Badura. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int. Orthop. 31(6):729–734, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mirri, F., A. W. Ma, T. T. Hsu, N. Behabtu, S. L. Eichmann, C. C. Young, D. E. Tsentalovich, and M. Pasquali. High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 6(11):9737–9744, 2012.CrossRefPubMedGoogle Scholar
  53. 53.
    National Institutes of Health (NIH). Fact Sheet—Regenerative Medicine. 2010.Google Scholar
  54. 54.
    Nayak, T. R., H. Andersen, V. S. Makam, C. Khaw, S. Bae, X. Xu, P.-L. R. Ee, J.-H. Ahn, B. H. Hong, G. Pastorin, and B. Özyilmaz. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678, 2011.CrossRefPubMedGoogle Scholar
  55. 55.
    Nayak, T. R., L. Jian, L. C. Phua, H. K. Ho, Y. Ren, and G. Pastorin. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano 4(12):7717–7725, 2010.CrossRefPubMedGoogle Scholar
  56. 56.
    Ng, S., J. Wang, Z. Guo, J. Chen, G. Wang, and H. K. Liu. Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta 51(1):23–28, 2005.CrossRefGoogle Scholar
  57. 57.
    Park, S. Y., J. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, and S. Hong. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 23(36):H263–H267, 2011.CrossRefPubMedGoogle Scholar
  58. 58.
    Patel, S. C., G. Lalwani, K. Grover, Y.-X. Qin, and B. Sitharaman. Fabrication and cytocompatibility of in situ crosslinked carbon nanomaterial films. Sci. Rep. 5:10261, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Patel, S. C., S. Lee, G. Lalwani, C. Suhrland, S. M. Chowdhury, and B. Sitharaman. Graphene-based platforms for cancer therapeutics. Ther. Deliv. 7(2):101–116, 2016.CrossRefPubMedGoogle Scholar
  60. 60.
    Pham, V. H., T. V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S. Chung, and E. J. Kim. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 48(7):1945–1951, 2010.CrossRefGoogle Scholar
  61. 61.
    Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147, 1999.CrossRefPubMedGoogle Scholar
  62. 62.
    Pryzhkova, M. V., I. Aria, Q. Cheng, G. M. Harris, X. Zan, M. Gharib, and E. Jabbarzadeh. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials 35(19):5098–5109, 2014.CrossRefPubMedGoogle Scholar
  63. 63.
    Puleo, D., and A. Nanci. Understanding and controlling the bone–implant interface. Biomaterials 20(23):2311–2321, 1999.CrossRefPubMedGoogle Scholar
  64. 64.
    Serrano, M. C., J. Patiño, C. García-Rama, M. L. Ferrer, J. Fierro, A. Tamayo, J. E. Collazos-Castro, F. del Monte, and M. C. Gutierrez. 3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth. J. Mater. Chem. B 2(34):5698–5706, 2014.CrossRefGoogle Scholar
  65. 65.
    Shen, H., L. Zhang, M. Liu, and Z. Zhang. Biomedical applications of graphene. Theranostics 2(3):283, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Shvedova, A. A., A. A. Kapralov, W. H. Feng, E. R. Kisin, A. R. Murray, R. R. Mercer, C. M. St Croix, M. A. Lang, S. C. Watkins, and N. V. Konduru. Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS ONE 7(3):e30923, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Song, Y. I., G. Y. Kim, H. K. Choi, H. J. Jeong, K. K. Kim, C. M. Yang, S. C. Lim, K. H. An, K. T. Jung, and Y. H. Lee. Fabrication of carbon nanotube field emitters using a dip-coating method. Chem. Vap. Depos. 12(6):375–379, 2006.CrossRefGoogle Scholar
  68. 68.
    Spotnitz, M. E., D. Ryan, and H. A. Stone. Dip coating for the alignment of carbon nanotubes on curved surfaces. J. Mater. Chem. 14(8):1299–1302, 2004.CrossRefGoogle Scholar
  69. 69.
    Suk, J. W., A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924, 2011.CrossRefPubMedGoogle Scholar
  70. 70.
    Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872, 2007.CrossRefPubMedGoogle Scholar
  71. 71.
    Tu, Q., L. Pang, Y. Chen, Y. Zhang, R. Zhang, B. Lu, and J. Wang. Effects of surface charges of graphene oxide on neuronal outgrowth and branching. Analyst 139(1):105–115, 2014.CrossRefPubMedGoogle Scholar
  72. 72.
    Veetil, J. V., and K. Ye. Tailored carbon nanotubes for tissue engineering applications. Biotechnol. Prog. 25(3):709–721, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Verfaillie, C. Pluripotent stem cells. Transfus. Clin. Biol. 16(2):65–69, 2009.CrossRefPubMedGoogle Scholar
  74. 74.
    Wang, X., L. Zhi, and K. Müllen. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1):323–327, 2008.CrossRefPubMedGoogle Scholar
  75. 75.
    Wojtek, T., C. Manish, and S. Federico. The chemical and physical characteristics of single-walled carbon nanotube film impact on osteoblastic cell response. Nanotechnology 21(31):315102, 2010.CrossRefGoogle Scholar
  76. 76.
    Wu, Z., Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, and A. F. Hebard. Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276, 2004.CrossRefPubMedGoogle Scholar
  77. 77.
    Xing, W., G. Lalwani, I. Rusakova, and B. Sitharaman. Degradation of graphene by hydrogen peroxide. Part. Part. Syst. Charact. 31(7):745–750, 2014.CrossRefGoogle Scholar
  78. 78.
    Xu, Y., G. Shi, and X. Duan. Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc. Chem. Res. 48(6):1666–1675, 2015.CrossRefPubMedGoogle Scholar
  79. 79.
    Yang, K., S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9):3318–3323, 2010.CrossRefPubMedGoogle Scholar
  80. 80.
    Zhang, L., and T. J. Webster. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1):66–80, 2009.CrossRefGoogle Scholar
  81. 81.
    Zhao, Y., B. L. Allen, and A. Star. Enzymatic degradation of multiwalled carbon nanotubes. J. Phys. Chem. A 115(34):9536–9544, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Zuk, P. A., M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim, and M. H. Hedrick. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13(12):4279–4295, 2002.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations