Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 6, pp 1921–1930 | Cite as

Single Cell Imaging to Probe Mesenchymal Stem Cell N-Cadherin Mediated Signaling within Hydrogels

  • Sebastián L. Vega
  • Michelle Kwon
  • Robert L. Mauck
  • Jason A. Burdick
Emerging Trends in Biomaterials Research

Abstract

N-cadherin (Ncad) mediates cell–cell interactions, regulates β-catenin (βcat) signaling, and promotes the chondrogenic differentiation of mesenchymal lineage cells. Here, we utilized confocal imaging to investigate the influence of Ncad interactions on single mesenchymal stem cell (MSC) behavior within 3-dimensional hydrogel environments under conditions that promote chondrogenic differentiation. Human MSCs were photoencapsulated in hyaluronic acid hydrogels functionalized with Ncad mimetic peptides and compared to cells in environments with control non-active peptides (Ctrl). Using single-cell imaging, we observed a significant increase in membrane βcat, nuclear βcat, and cell roundness after 3 days in Ncad hydrogels compared to Ctrl hydrogels. The extent of membrane and nuclear βcat localization and MSC roundness decreased to Ctrl hydrogel levels via pre-treatment with Ncad-specific antibodies prior to encapsulation in the Ncad hydrogels, confirming the activity of the peptide. Interestingly, there was a pronounced (>80%) increase in βcat nuclear localization in two-cell clusters within the Ctrl hydrogels, which was much greater than the increase (~30%) in βcat nuclear localization in two-cell clusters within the Ncad hydrogels. In summary, we utilized fluorescent imaging to demonstrate Ncad-mediated single cell responses to developmental cues within hydrogels towards chondrogenesis.

Keywords

Hyaluronic acid N-cadherin Biomaterials Tissue engineering 

Notes

Acknowledgments

This work was supported by a graduate research fellowship from the National Science Foundation (MK) and grants from the National Institutes of Health (R01 EB008722, T32 AR007132) and the Department of Veterans Affairs (I01 RX000700).

References

  1. 1.
    Ahrens, P. B., M. Solursh, and R. S. Reiter. Stage-related capacity for limb chondrogenesis in cell culture. Dev. Biol. 60:69–82, 1977.CrossRefPubMedGoogle Scholar
  2. 2.
    Balsamo, J., T. Leung, H. Ernst, M. K. Zanin, S. Hoffman, and J. Lilien. Regulated binding of ptp1b-like phosphatase to n-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin. J. Cell Biol. 134:801–813, 1996.CrossRefPubMedGoogle Scholar
  3. 3.
    Beane, O. S., and E. M. Darling. Isolation, characterization, and differentiation of stem cells for cartilage regeneration. Ann. Biomed. Eng. 40:2079–2097, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bian, L., M. Guvendiren, R. L. Mauck, and J. A. Burdick. Hydrogels that mimic developmentally relevant matrix and n-cadherin interactions enhance msc chondrogenesis. Proc. Natl. Acad. Sci. U.S.A. 110:10117–10122, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Blaschuk, O. W., R. Sullivan, S. David, and Y. Pouliot. Identification of a cadherin cell adhesion recognition sequence. Dev. Biol. 139:227–229, 1990.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen, W. Y., and G. Abatangelo. Functions of hyaluronan in wound repair. Wound Repair Regen. 7:79–89, 1999.CrossRefPubMedGoogle Scholar
  7. 7.
    Connelly, J. T., A. J. Garcia, and M. E. Levenston. Inhibition of in vitro chondrogenesis in rgd-modified three-dimensional alginate gels. Biomaterials 28:1071–1083, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    Cote, A. J., C. M. Mcleod, M. J. Farrell, P. D. Mcclanahan, M. C. Dunagin, A. Raj, and R. L. Mauck. Single cell differences in matrix gene expression do not predict matrix deposition. Nat. Commun. 7:10865, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gao, L., R. Mcbeath, and C. S. Chen. Stem cell shape regulates a chondrogenic versus myogenic fate through rac1 and n-cadherin. Stem Cells 28:564–572, 2010.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Guvendiren, M., and J. A. Burdick. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr. Opin. Biotechnol. 24:841–846, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hoschuetzky, H., H. Aberle, and R. Kemler. Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J. Cell Biol. 127:1375–1380, 1994.CrossRefPubMedGoogle Scholar
  12. 12.
    Huang, A. H., M. J. Farrell, and R. L. Mauck. Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. J. Biomech. 43:128–136, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 107:4872–4877, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kim, W., M. Kim, and E. H. Jho. Wnt/beta-catenin signalling: from plasma membrane to nucleus. Biochem. J. 450:9–21, 2013.CrossRefPubMedGoogle Scholar
  15. 15.
    Knudson, C. B., and B. P. Toole. Hyaluronate-cell interactions during differentiation of chick embryo limb mesoderm. Dev. Biol. 124:82–90, 1987.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee, H. J., C. Yu, T. Chansakul, N. S. Hwang, S. Varghese, S. M. Yu, and J. H. Elisseeff. Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment. Tissue Eng. A 14:1843–1851, 2008.CrossRefGoogle Scholar
  17. 17.
    Lisignoli, G., S. Cristino, A. Piacentini, C. Cavallo, A. I. Caplan, and A. Facchini. Hyaluronan-based polymer scaffold modulates the expression of inflammatory and degradative factors in mesenchymal stem cells: involvement of cd44 and cd54. J. Cell. Physiol. 207:364–373, 2006.CrossRefPubMedGoogle Scholar
  18. 18.
    Ma, B., E. B. Landman, R. L. Miclea, J. M. Wit, E. C. Robanus-Maandag, J. N. Post, and M. Karperien. Wnt signaling and cartilage: of mice and men. Calcif. Tissue Int. 92:399–411, 2013.CrossRefPubMedGoogle Scholar
  19. 19.
    Makris, E. A., A. H. Gomoll, K. N. Malizos, J. C. Hu, and K. A. Athanasiou. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 11:21–34, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mcbeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.CrossRefPubMedGoogle Scholar
  21. 21.
    Modarresi, R., T. Lafond, J. A. Roman-Blas, K. G. Danielson, R. S. Tuan, and M. R. Seghatoleslami. N-cadherin mediated distribution of beta-catenin alters map kinase and bmp-2 signaling on chondrogenesis-related gene expression. J. Cell. Biochem. 95:53–63, 2005.CrossRefPubMedGoogle Scholar
  22. 22.
    Oberlender, S. A., and R. S. Tuan. Spatiotemporal profile of n-cadherin expression in the developing limb mesenchyme. Cell Adhes. Commun. 2:521–537, 1994.CrossRefPubMedGoogle Scholar
  23. 23.
    Otsu, N. Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9:62–66, 1979.CrossRefGoogle Scholar
  24. 24.
    Russell, K. C., D. G. Phinney, M. R. Lacey, B. L. Barrilleaux, K. E. Meyertholen, and K. C. O’connor. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788–798, 2010.CrossRefPubMedGoogle Scholar
  25. 25.
    Sadot, E., I. Simcha, M. Shtutman, A. Ben-Ze’ev, and B. Geiger. Inhibition of beta-catenin-mediated transactivation by cadherin derivatives. Proc. Natl. Acad. Sci. USA 95:15339–15344, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schwartz, Z., D. J. Griffon, L. P. Fredericks, H. B. Lee, and H. Y. Weng. Hyaluronic acid and chondrogenesis of murine bone marrow mesenchymal stem cells in chitosan sponges. Am. J. Vet. Res. 72:42–50, 2011.CrossRefPubMedGoogle Scholar
  27. 27.
    Shapiro, L., A. M. Fannon, P. D. Kwong, A. Thompson, M. S. Lehmann, G. Grubel, J. F. Legrand, J. Als-Nielsen, D. R. Colman, and W. A. Hendrickson. Structural basis of cell-cell adhesion by cadherins. Nature 374:327–337, 1995.CrossRefPubMedGoogle Scholar
  28. 28.
    Smeds, K. A., and M. W. Grinstaff. Photocrosslinkable polysaccharides for in situ hydrogel formation. J. Biomed. Mater. Res. 54:115–121, 2001.CrossRefPubMedGoogle Scholar
  29. 29.
    Tavella, S., P. Raffo, C. Tacchetti, R. Cancedda, and P. Castagnola. N-cam and n-cadherin expression during in vitro chondrogenesis. Exp. Cell Res. 215:354–362, 1994.CrossRefPubMedGoogle Scholar
  30. 30.
    Tuli, R., S. Tuli, S. Nandi, X. Huang, P. A. Manner, W. J. Hozack, K. G. Danielson, D. J. Hall, and R. S. Tuan. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves n-cadherin and mitogen-activated protein kinase and wnt signaling cross-talk. J. Biol. Chem. 278:41227–41236, 2003.CrossRefPubMedGoogle Scholar
  31. 31.
    Wu, S. C., J. K. Chang, C. K. Wang, G. J. Wang, and M. L. Ho. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials 31:631–640, 2010.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Sebastián L. Vega
    • 1
  • Michelle Kwon
    • 1
  • Robert L. Mauck
    • 1
    • 2
  • Jason A. Burdick
    • 1
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Orthopedic Surgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations