Annals of Biomedical Engineering

, Volume 45, Issue 1, pp 115–131 | Cite as

Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine

  • Vivian K. Lee
  • Guohao DaiEmail author
Additive Manufacturing of Biomaterials, Tissues, and Organs


Three-dimensional (3-D) cell printing, which can accurately deposit cells, biomaterial scaffolds and growth factors in precisely defined spatial patterns to form biomimetic tissue structures, has emerged as a powerful enabling technology to create live tissue and organ structures for drug discovery and tissue engineering applications. Unlike traditional 3-D printing that uses metals, plastics and polymers as the printing materials, cell printing has to be compatible with living cells and biological matrix. It is also required that the printing process preserves the biological functions of the cells and extracellular matrix, and to mimic the cell–matrix architectures and mechanical properties of the native tissues. Therefore, there are significant challenges in order to translate the technologies of traditional 3-D printing to cell printing, and ultimately achieve functional outcomes in the printed tissues. So it is essential to develop new technologies specially designed for cell printing and in-depth basic research in the bioprinted tissues, such as developing novel biomaterials specifically for cell printing applications, understanding the complex cell–matrix remodeling for the desired mechanical properties and functional outcomes, establishing proper vascular perfusion in bioprinted tissues, etc. In recent years, many exciting research progresses have been made in the 3-D cell printing technology and its application in engineering live tissue constructs. This review paper summarized the current development in 3-D cell printing technologies; focus on the outcomes of the live printed tissues and their potential applications in drug discovery and regenerative medicine. Current challenges and limitations are highlighted, and future directions of 3-D cell printing technology are also discussed.


Cell printing Tissue engineering Regenerative medicine 3-D tissue model 



We acknowledge the support from NSF CBET-1263455, NSF Career-1350240, NIH R01HL118245 and American Heart Association 12SDG12050083.

Conflict of interest

Both authors declare no conflict of interest associated with this work.


  1. 1.
    Bajaj, P., R. M. Schweller, A. Khademhosseini, J. L. West, and R. Bashir. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 16:247–276, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ballyns, J. J., J. P. Gleghorn, V. Niebrzydowski, J. J. Rawlinson, H. G. Potter, S. A. Maher, T. M. Wright, and L. J. Bonassar. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng. Part A 14:1195–1202, 2008.PubMedCrossRefGoogle Scholar
  3. 3.
    Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Billiet, T., E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62, 2014.PubMedCrossRefGoogle Scholar
  5. 5.
    Binder, K. W., W. Zhao, T. Aboushwareb, D. Dice, A. Atala, and J. J. Yoo. In situ bioprinting of the skin for burns. J. Am. Coll. Surg. 211:S76, 2010.CrossRefGoogle Scholar
  6. 6.
    Bose, S., S. Vahabzadeh, and A. Bandyopadhyay. Bone tissue engineering using 3D printing. Mater. Today 16:496–504, 2013.CrossRefGoogle Scholar
  7. 7.
    Chang, R., J. Nam, and W. Sun. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A 14:41–48, 2008.PubMedCrossRefGoogle Scholar
  8. 8.
    Choi, H. J., J. M. Kim, E. Kwon, J.-H. Che, J.-I. Lee, S.-R. Cho, S. K. Kang, J. C. Ra, and B.-C. Kang. Establishment of efficacy and safety assessment of human adipose tissue-derived mesenchymal stem cells (hATMSCs) in a nude rat femoral segmental defect model. J. Korean Med. Sci. 26:482–491, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Colosi, C., S. R. Shin, V. Manoharan, S. Massa, M. Costantini, A. Barbetta, M. R. Dokmeci, M. Dentini, and A. Khademhosseini. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv. Mater. 28:677–684, 2016.PubMedCrossRefGoogle Scholar
  10. 10.
    Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.PubMedCrossRefGoogle Scholar
  11. 11.
    Cui, X., K. Breitenkamp, M. G. Finn, M. Lotz, and D. D. D’Lima. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A 18:1304–1312, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cui, X., K. Breitenkamp, M. Lotz, and D. D’Lima. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol. Bioeng. 109:2357–2368, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Cui, X., D. Dean, Z. M. Ruggeri, and T. Boland. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol. Bioeng. 106:963–969, 2010.PubMedCrossRefGoogle Scholar
  14. 14.
    Cui, X., G. Gao, T. Yonezawa, and G. Dai. Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J. Vis. Exp. 88:e51294, 2014.Google Scholar
  15. 15.
    Demirci, U., and G. Montesano. Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7:1139–1145, 2007.PubMedCrossRefGoogle Scholar
  16. 16.
    Dhariwala, B., E. Hunt, and T. Boland. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 10:1316–1322, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Duan, B., L. A. Hockaday, K. H. Kang, and J. T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. A 101:1255–1264, 2013.PubMedCrossRefGoogle Scholar
  18. 18.
    Duan, B., E. Kapetanovic, L. A. Hockaday, and J. T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10:1836–1846, 2014.PubMedCrossRefGoogle Scholar
  19. 19.
    Fedorovich, N. E., W. Schuurman, H. M. Wijnberg, H. J. Prins, P. R. van Weeren, J. Malda, J. Alblas, and W. J. Dhert. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. Part C 18:33–44, 2012.CrossRefGoogle Scholar
  20. 20.
    Fedorovich, N. E., H. M. Wijnberg, W. J. Dhert, and J. Alblas. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng. Part A 17:2113–2121, 2011.PubMedCrossRefGoogle Scholar
  21. 21.
    Gaebel, R., N. Ma, J. Liu, J. Guan, L. Koch, C. Klopsch, M. Gruene, A. Toelk, W. Wang, P. Mark, F. Wang, B. Chichkov, W. Li, and G. Steinhoff. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230, 2011.PubMedCrossRefGoogle Scholar
  22. 22.
    Gaetani, R., P. A. Doevendans, C. H. Metz, J. Alblas, E. Messina, A. Giacomello, and J. P. Sluijter. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790, 2012.PubMedCrossRefGoogle Scholar
  23. 23.
    Gaetani, R., D. A. Feyen, V. Verhage, R. Slaats, E. Messina, K. L. Christman, A. Giacomello, P. A. Doevendans, and J. P. Sluijter. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348, 2015.PubMedCrossRefGoogle Scholar
  24. 24.
    Gao, Q., Y. He, J. Z. Fu, A. Liu, and L. Ma. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215, 2015.PubMedCrossRefGoogle Scholar
  25. 25.
    Gao, G., A. F. Schilling, T. Yonezawa, J. Wang, G. Dai, and X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9:1304–1311, 2014.PubMedCrossRefGoogle Scholar
  26. 26.
    Gao, G., T. Yonezawa, K. Hubbell, G. Dai, and X. Cui. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol. J. 10:1568, 2015.PubMedCrossRefGoogle Scholar
  27. 27.
    Giannitelli, S. M., P. Mozetic, M. Trombetta, and A. Rainer. Combined additive manufacturing approaches in tissue engineering. Acta Biomater. 24:1–11, 2015.PubMedCrossRefGoogle Scholar
  28. 28.
    Giordano, R. A., B. M. Wu, S. W. Borland, L. G. Cima, E. M. Sachs, and M. J. Cima. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Ed. 8:63–75, 1996.PubMedCrossRefGoogle Scholar
  29. 29.
    Guillemot, F., V. Mironov, and M. Nakamura. Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09). Biofabrication 2:010201, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    Guillemot, F., A. Souquet, S. Catros, B. Guillotin, J. Lopez, M. Faucon, B. Pippenger, R. Bareille, M. Remy, S. Bellance, P. Chabassier, J. C. Fricain, and J. Amedee. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 6:2494–2500, 2010.PubMedCrossRefGoogle Scholar
  31. 31.
    Guillotin, B., A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Remy, L. Bordenave, J. Amedee, and F. Guillemot. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256, 2010.PubMedCrossRefGoogle Scholar
  32. 32.
    Gurkan, U. A., R. El Assal, S. E. Yildiz, Y. Sung, A. J. Trachtenberg, W. P. Kuo, and U. Demirci. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol. Pharm. 11:2151–2159, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Highley, C. B., C. B. Rodell, and J. A. Burdick. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27:5075–5079, 2015.PubMedCrossRefGoogle Scholar
  34. 34.
    Hinton, T. J., Q. Jallerat, R. N. Palchesko, J. H. Park, M. S. Grodzicki, H.-J. Shue, M. H. Ramadan, A. R. Hudson, and A. W. Feinberg. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1:e1500758, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hockaday, L. A., K. H. Kang, N. W. Colangelo, P. Y. Cheung, B. Duan, E. Malone, J. Wu, L. N. Girardi, L. J. Bonassar, H. Lipson, C. C. Chu, and J. T. Butcher. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4:035005, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4:518–524, 2005.PubMedCrossRefGoogle Scholar
  37. 37.
    Hutmacher, D. W., M. Sittinger, and M. V. Risbud. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22:354–362, 2004.PubMedCrossRefGoogle Scholar
  38. 38.
    Inzana, J. A., D. Olvera, S. M. Fuller, J. P. Kelly, O. A. Graeve, E. M. Schwarz, S. L. Kates, and H. A. Awad. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Jakab, K., A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. USA 101:2864–2869, 2004.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kang, H. W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34:312–319, 2016.PubMedCrossRefGoogle Scholar
  41. 41.
    Keriquel, V., F. Guillemot, I. Arnault, B. Guillotin, S. Miraux, J. Amédée, J.-C. Fricain, and S. Catros. In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2:014101, 2010.PubMedCrossRefGoogle Scholar
  42. 42.
    Khalil, S., and W. Sun. Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng. 131:111002, 2009.PubMedCrossRefGoogle Scholar
  43. 43.
    Killat, J., K. Reimers, C. Y. Choi, S. Jahn, P. M. Vogt, and C. Radtke. Cultivation of keratinocytes and fibroblasts in a three-dimensional bovine collagen-elastin matrix (Matriderm®) and application for full thickness wound coverage in vivo. Int. J. Mol. Sci. 14:14460–14474, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Koch, L., A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. Chichkov. Skin tissue generation by laser cell printing. Biotechnol. Bioeng. 109:1855–1863, 2012.PubMedCrossRefGoogle Scholar
  45. 45.
    Landers, R., U. Hubner, R. Schmelzeisen, and R. Mulhaupt. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447, 2002.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee, W., J. C. Debasitis, V. K. Lee, J. H. Lee, K. Fischer, K. Edminster, J. K. Park, and S. S. Yoo. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595, 2009.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee, J. W., K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32:744–752, 2011.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee, V. K., D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S. S. Yoo, P. A. Vincent, and G. Dai. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35:8092–8102, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lee, V. K., A. M. Lanzi, N. Haygan, S. S. Yoo, P. A. Vincent, and G. Dai. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell. Mol. Bioeng. 7:460–472, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lee, W., V. Lee, S. Polio, P. Keegan, J. H. Lee, K. Fischer, J. K. Park, and S. S. Yoo. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol. Bioeng. 105:1178–1186, 2010.PubMedGoogle Scholar
  51. 51.
    Lee, C. H., N. W. Marion, S. Hollister, and J. J. Mao. Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo. Tissue Eng. Part A 15:3923–3930, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lee, Y. B., S. Polio, W. Lee, G. Dai, L. Menon, R. S. Carroll, and S. S. Yoo. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 223:645–652, 2010.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee, V., G. Singh, J. P. Trasatti, C. Bjornsson, X. Xu, T. N. Tran, S. S. Yoo, G. Dai, and P. Karande. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C 20:473–484, 2014.CrossRefGoogle Scholar
  54. 54.
    Li, J., L. He, C. Zhou, Y. Zhou, Y. Y. Bai, F. Y. Lee, and J. J. Mao. 3D printing for regenerative medicine: from bench to bedside. MRS Bull. 40:145–153, 2015.CrossRefGoogle Scholar
  55. 55.
    Lin, C. Y., N. Kikuchi, and S. J. Hollister. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. 37:623–636, 2004.PubMedCrossRefGoogle Scholar
  56. 56.
    Malda, J., J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. Dhert, J. Groll, and D. W. Hutmacher. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.PubMedCrossRefGoogle Scholar
  57. 57.
    Markstedt, K., A. Mantas, I. Tournier, H. Martinez-Avila, D. Hagg, and P. Gatenholm. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489, 2015.PubMedCrossRefGoogle Scholar
  58. 58.
    Michael, S., H. Sorg, C. T. Peck, L. Koch, A. Deiwick, B. Chichkov, P. M. Vogt, and K. Reimers. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE 8:e57741, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D. H. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21:157–161, 2003.PubMedCrossRefGoogle Scholar
  61. 61.
    Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.PubMedCrossRefGoogle Scholar
  63. 63.
    Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101:272–284, 2013.PubMedCrossRefGoogle Scholar
  64. 64.
    Nair, K., M. Gandhi, S. Khalil, K. C. Yan, M. Marcolongo, K. Barbee, and W. Sun. Characterization of cell viability during bioprinting processes. Biotechnol. J. 4:1168–1177, 2009.PubMedCrossRefGoogle Scholar
  65. 65.
    Nakamura, M., A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 11:1658–1666, 2005.PubMedCrossRefGoogle Scholar
  66. 66.
    Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ovsianikov, A., M. Gruene, M. Pflaum, L. Koch, F. Maiorana, M. Wilhelmi, A. Haverich, and B. Chichkov. Laser printing of cells into 3D scaffolds. Biofabrication 2:014104, 2010.PubMedCrossRefGoogle Scholar
  68. 68.
    Ozbolat, I. T. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 33:395–400, 2015.PubMedCrossRefGoogle Scholar
  69. 69.
    Ozturk, M. S., V. K. Lee, L. Zhao, G. Dai, and X. Intes. Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue. J. Biomed. Opt. 18:100501, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Pashuck, E. T., and M. M. Stevens. Designing regenerative biomaterial therapies for the clinic. Sci Transl Med 4:160sr164, 2012.CrossRefGoogle Scholar
  71. 71.
    Pati, F., D. H. Ha, J. Jang, H. H. Han, J. W. Rhie, and D. W. Cho. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175, 2015.PubMedCrossRefGoogle Scholar
  72. 72.
    Pati, F., J. Jang, D. H. Ha, S. W. Kim, J. W. Rhie, J. H. Shim, D. H. Kim, and D. W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Peltola, S. M., F. P. Melchels, D. W. Grijpma, and M. Kellomaki. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40:268–280, 2008.PubMedCrossRefGoogle Scholar
  74. 74.
    Roth, E. A., T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing for high-throughput cell patterning. Biomaterials 25:3707–3715, 2004.PubMedCrossRefGoogle Scholar
  75. 75.
    Rutz, A. L., K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27:1607–1614, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Saunders, R. E., J. E. Gough, and B. Derby. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203, 2008.PubMedCrossRefGoogle Scholar
  77. 77.
    Schiele, N. R., D. T. Corr, Y. Huang, N. A. Raof, Y. Xie, and D. B. Chrisey. Laser-based direct-write techniques for cell printing. Biofabrication 2:032001, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Seol, Y. J., H. W. Kang, S. J. Lee, A. Atala, and J. J. Yoo. Bioprinting technology and its applications. Eur. J. Cardiothorac. Surg. 46:342–348, 2014.PubMedCrossRefGoogle Scholar
  79. 79.
    Singh, M., H. M. Haverinen, P. Dhagat, and G. E. Jabbour. Inkjet printing-process and its applications. Adv. Mater. 22:673–685, 2010.PubMedCrossRefGoogle Scholar
  80. 80.
    Skardal, A., and A. Atala. Biomaterials for integration with 3-D bioprinting. Ann. Biomed. Eng. 43:730–746, 2015.PubMedCrossRefGoogle Scholar
  81. 81.
    Skardal, A., D. Mack, E. Kapetanovic, A. Atala, J. D. Jackson, J. Yoo, and S. Soker. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1:792, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Skardal, A., J. Zhang, L. McCoard, X. Xu, S. Oottamasathien, and G. D. Prestwich. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A 16:2675–2685, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Skardal, A., J. Zhang, and G. D. Prestwich. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31:6173–6181, 2010.PubMedCrossRefGoogle Scholar
  84. 84.
    Skoog, S. A., P. L. Goering, and R. J. Narayan. Stereolithography in tissue engineering. J. Mater. Sci. Mater. Med. 25:845–856, 2014.PubMedCrossRefGoogle Scholar
  85. 85.
    Strobel, L. A., S. N. Rath, A. K. Maier, J. P. Beier, A. Arkudas, P. Greil, R. E. Horch, and U. Kneser. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. J. Tissue Eng. Regen. Med. 8:176–185, 2014.PubMedCrossRefGoogle Scholar
  86. 86.
    Sun, W., A. Darling, B. Starly, and J. Nam. Computer-aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem. 39:29–47, 2004.PubMedCrossRefGoogle Scholar
  87. 87.
    Tao, X., W. B. Kyle, Z. A. Mohammad, D. Dennis, Z. Weixin, J. Y. James, and A. Anthony. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001, 2013.CrossRefGoogle Scholar
  88. 88.
    Tarafder, S., V. K. Balla, N. M. Davies, A. Bandyopadhyay, and S. Bose. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 7:631–641, 2013.PubMedCrossRefGoogle Scholar
  89. 89.
    Tasoglu, S., and U. Demirci. Bioprinting for stem cell research. Trends Biotechnol. 31:10–19, 2013.PubMedCrossRefGoogle Scholar
  90. 90.
    Temple, J. P., D. L. Hutton, B. P. Hung, P. Y. Huri, C. A. Cook, R. Kondragunta, X. Jia, and W. L. Grayson. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. A 102:4317–4325, 2014.PubMedGoogle Scholar
  91. 91.
    Tsang, V. L., A. A. Chen, L. M. Cho, K. D. Jadin, R. L. Sah, S. DeLong, J. L. West, and S. N. Bhatia. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 21:790–801, 2007.CrossRefGoogle Scholar
  92. 92.
    Weinand, C., R. Gupta, E. Weinberg, I. Madisch, C. M. Neville, J. B. Jupiter, and J. P. Vacanti. Toward regenerating a human thumb in situ. Tissue Eng. Part A 15:2605–2615, 2009.PubMedCrossRefGoogle Scholar
  93. 93.
    Wilson, Jr, W. C., and T. Boland. Cell and organ printing 1: protein and cell printers. Anat. Rec A 272:491–496, 2003.CrossRefGoogle Scholar
  94. 94.
    Wu, P. K., and B. R. Ringeisen. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2:014111, 2010.PubMedCrossRefGoogle Scholar
  95. 95.
    Wust, S., M. E. Godla, R. Muller, and S. Hofmann. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 10:630–640, 2014.PubMedCrossRefGoogle Scholar
  96. 96.
    Xu, T., C. A. Gregory, P. Molnar, X. Cui, S. Jalota, S. B. Bhaduri, and T. Boland. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588, 2006.PubMedGoogle Scholar
  97. 97.
    Xu, T., J. Jin, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing of viable mammalian cells. Biomaterials 26:93–99, 2005.PubMedCrossRefGoogle Scholar
  98. 98.
    Yang, S., K. F. Leong, Z. Du, and C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8:1–11, 2002.PubMedCrossRefGoogle Scholar
  99. 99.
    Yeong, W. Y., C. K. Chua, K. F. Leong, and M. Chandrasekaran. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22:643–652, 2004.PubMedCrossRefGoogle Scholar
  100. 100.
    Yu, Y., Y. Zhang, and I. T. Ozbolat. A hybrid bioprinting approach for scale-up tissue fabrication. J. Manuf. Sci. Eng. 136:061013, 2014.CrossRefGoogle Scholar
  101. 101.
    Zhao, L., V. K. Lee, S. S. Yoo, G. Dai, and X. Intes. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33:5325–5332, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhao, Y., R. Yao, L. Ouyang, H. Ding, T. Zhang, K. Zhang, S. Cheng, and W. Sun. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001, 2014.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations