Annals of Biomedical Engineering

, Volume 44, Issue 6, pp 1881–1893 | Cite as

Bioactivity and Mechanical Stability of 45S5 Bioactive Glass Scaffolds Based on Natural Marine Sponges

  • E. Boccardi
  • A. Philippart
  • V. Melli
  • L. Altomare
  • L. De Nardo
  • G. Novajra
  • C. Vitale-Brovarone
  • T. Fey
  • A. R. BoccacciniEmail author
Emerging Trends in Biomaterials Research


Bioactive glass (BG) based scaffolds (45S5 BG composition) were developed by the replica technique using natural marine sponges as sacrificial templates. The resulting scaffolds were characterized by superior mechanical properties (compression strength up to 4 MPa) compared to conventional BG scaffolds prepared using polyurethane (PU) packaging foam as a template. This result was ascribed to a reduction of the total scaffold porosity without affecting the pore interconnectivity (>99%). It was demonstrated that the reduction of total porosity did not affect the bioactivity of the BG-based scaffolds, tested by immersion of scaffolds in simulated body fluid (SBF). After 1 day of immersion in SBF, a homogeneous CaP deposit on the surface of the scaffolds was formed, which evolved over time into carbonate hydroxyapatite (HCA). Moreover, the enhanced mechanical properties of these scaffolds were constant over time in SBF; after an initial reduction of the maximum compressive strength upon 7 days of immersion in SBF (to 1.2 ± 0.2 MPa), the strength values remained almost constant and higher than those of BG-based scaffolds prepared using PU foam (<0.05 MPa). Preliminary cell culture tests with Saos-2 osteoblast cell line, namely direct and indirect tests, demonstrated that no toxic residues remained from the natural marine sponge templates and that cells were able to proliferate on the scaffold surfaces.


Natural marine sponges Bioactive glass scaffolds Simulated body fluid Biocompatibility Osteoblasts 



The authors would like to acknowledge financial support from the EU ITN FP-7 project “GlaCERCo”. The authors would like to acknowledge Dr. Judith A. Juhasz-Bortuzzo for correcting the English of this paper.

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Aguilar-Reyes, E. A., C. A. León-Patiño, B. Jacinto-Diaz, and L. P. Lefebvre. Structural characterization and mechanical evaluation of bioactive glass 45S5 foams obtained by a powder technology approach. J. Am. Ceram. Soc. 95(12):3776–3780, 2012.CrossRefGoogle Scholar
  2. 2.
    Amini, A. R., C. T. Laurencin, and S. P. Nukavarapu. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 40(5):363–408, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Arkudas, A., A. Balzer, G. Buehrer, I. Arnold, A. Hoppe, R. Detsch, P. Newby, T. Fey, P. Greil, R. E. Horch, A. R. Boccaccini, and U. Kneser. Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model. Tissue Eng. Part C 19(6):479–486, 2013.CrossRefGoogle Scholar
  4. 4.
    Arrington, E. D., W. J. Smith, H. G. Chambers, A. L. Bucknell, and N. A. Davino. Complications of iliac crest bone graft harvesting. Clin. Orthop. Relat. Res. 329:300–309, 1996.CrossRefPubMedGoogle Scholar
  5. 5.
    Boccardi, E., I. V. Belova, G. E. Murch, A. R. Boccaccini, and T. Fiedler. Oxygen diffusion in marine-derived tissue engineering scaffolds. J. Mater. Sci. Mater. Med. 26:200, 2015.CrossRefPubMedGoogle Scholar
  6. 6.
    Boccardi, E., V. Melli, G. Catignoli, L. Altomare, M. T. Jahromi, M. Cerruti, L.-P. Lefebvre, and L. De Nardo. Study of the mechanical stability and bioactivity of Bioglass® based glass-ceramic scaffolds produced via powder metallurgy-inspired approach. Biomed. Mater. 11:015005, 2016.CrossRefPubMedGoogle Scholar
  7. 7.
    Boccardi, E., A. Philippart, J. A. Juhasz-Bortuzzo, G. Novajra, C. Vitale-Brovarone, and A. R. Boccaccini. Characterisation of bioglass based foams developed via replication of natural marine sponges. Adv. Appl. Ceram. 114(S1):S56–S62, 2015.CrossRefGoogle Scholar
  8. 8.
    Cerruti, M., D. Greenspan, and K. Powers. Effect of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials 26(14):1665–1674, 2005.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen, Q. Z., I. D. Thompson, and A. R. Boccaccini. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425, 2006.CrossRefPubMedGoogle Scholar
  10. 10.
    Cunningham, E., N. Dunne, S. Clarke, S. Y. Choi, G. Walker, R. Wilcox, R. E. Unger, F. Buchnan, and C. J. Kirkpatrick. Comparative characterization of 3-D hydroxyapatite scaffolds developed via replication of synthetic polymer foams and natural marine sponges. J. Tissue Sci. Eng. S1:001, 2011. doi: 10.4172/2157-7552.S1-001.Google Scholar
  11. 11.
    Gerhardt, L.-C., and A. R. Boccaccini. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3(7):3867–3910, 2010.CrossRefGoogle Scholar
  12. 12.
    Gorustovich, A. A., J. A. Roether, and A. R. Boccaccini. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng. Part B Rev. 16(2):199–207, 2010.CrossRefPubMedGoogle Scholar
  13. 13.
    Hench, L. L. Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74(7):1487–1510, 1991.CrossRefGoogle Scholar
  14. 14.
    Hench, L. L. The story of bioglass. J. Mater. Sci. Mater. Med. 17(11):967–978, 2006.CrossRefPubMedGoogle Scholar
  15. 15.
    Hench, L. L. Opening paper 2015-some comments on Bioglass: four eras of discovery and development. Biomed. Glas. 1:1–11, 2015.Google Scholar
  16. 16.
    Hench, L. L., and J. Wilson. Surface-active biomaterials. Science 226(4675):630–636, 1984.CrossRefPubMedGoogle Scholar
  17. 17.
    Hoppe, A., N. S. Güldal, and A. R. Boccaccini. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774, 2011.CrossRefPubMedGoogle Scholar
  18. 18.
    Jones, J. R. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9(1):4457–4486, 2013.CrossRefPubMedGoogle Scholar
  19. 19.
    Kokubo, T., and H. Takadama. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915, 2006.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu, W., T. Wang, Y. Shen, H. Pan, S. Peng, and W. W Lu. Strontium incorporated coralline hydroxyapatite for engineering bone. ISRN Biomater, 2013.
  21. 21.
    Macon, A. L. B., T. B. Kim, E. M. Valliant, K. Goetschius, R. K. Brow, D. E. Day, A. Hoppe, A. R. Boccaccini, I. Y. Kim, C. Ohtsuki, T. Kokubo, A. Osaka, M. Vallet-Regí, D. Arcos, L. Fraile, A. J. Salinas, A. V. Teixeira, Y. Vueva, R. M. Almeida, M. Miola, C. Vitale-Brovarone, E. Verné, W. Höland, and J. R. Jones. A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J. Mater. Sci. Mater. Med. 26:115, 2015.CrossRefPubMedGoogle Scholar
  22. 22.
    Miguez Pacheco, V., L. L. Hench, and A. R. Boccaccini. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 13:1–15, 2015.CrossRefPubMedGoogle Scholar
  23. 23.
    Peitl, O., E. D. Zanotto, and L. L. Hench. Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. J. Non Cryst. Solids 292(1–3):115–126, 2001.CrossRefGoogle Scholar
  24. 24.
    Philippart, A., A. R. Boccaccini, C. Fleck, D. W. Schubert, and J. A. Roether. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years. Expert Rev. Med. Devices. 12(1):93–111, 2015.CrossRefPubMedGoogle Scholar
  25. 25.
    Porter, J. R., T. T. Ruckh, and K. C. Popat. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol. Prog. 25(6):1539–1560, 2009.PubMedGoogle Scholar
  26. 26.
    Pronzato, R., and R. Manconi. Mediterranean commercial sponges: over 5000 years of natural history and cultural heritage. Mar. Ecol. 29:146–166, 2008.CrossRefGoogle Scholar
  27. 27.
    Sanz-Herrera, J. A., and A. R. Boccaccini. Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds. Int. J. Solids Struct. 48(2):257–268, 2011.CrossRefGoogle Scholar
  28. 28.
    Stevens, M. M. Biomaterials for bone tissue engineering. Mater. Today 11(5):18–25, 2008.CrossRefGoogle Scholar
  29. 29.
    Vitale-Brovarone, C., E. Verné, L. Robiglio, P. Appendino, F. Bassi, G. Martinasso, G. Muzio, and R. Canuto. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater. 3(2):198–208, 2007.CrossRefGoogle Scholar
  30. 30.
    Xynos, I. D., M. V. J. Hukkanen, J. J. Batten, L. D. Buttery, L. L. Hench, and J. M. Polak. Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int. 67(4):321–329, 2000.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • E. Boccardi
    • 1
  • A. Philippart
    • 1
  • V. Melli
    • 2
  • L. Altomare
    • 2
  • L. De Nardo
    • 2
  • G. Novajra
    • 3
  • C. Vitale-Brovarone
    • 3
  • T. Fey
    • 4
  • A. R. Boccaccini
    • 1
    Email author
  1. 1.Department of Materials Science and Engineering, Institute of BiomaterialsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Department of Chemistry, Materials and Chemical Engineering “G. Natta”Politecnico di MilanoMilanItaly
  3. 3.Applied Science and Technology Department, Institute of Materials Physics and EngineeringPolitecnico di TorinoTurinItaly
  4. 4.Department of Materials Science and Engineering, Institute of Glass and CeramicUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations