Skip to main content

Advertisement

Log in

Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors

  • Emerging Trends in Biomaterials Research
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abou-Khalil, R., F. Yang, S. Lieu, A. Julien, J. Perry, C. Pereira, F. Relaix, T. Miclau, R. Marcucio, and C. Colnot. Role of muscle stem cells during skeletal regeneration. Stem Cells. 33:1501–1511, 2015.

    Article  CAS  PubMed  Google Scholar 

  2. Adnot, S., M. Desmier, N. Ferry, J. Hanoune, and T. Sevenet. Forskolin (a powerful inhibitor of human platelet aggregation). Biochem. Pharmacol. 31:4071–4074, 1982.

    Article  CAS  PubMed  Google Scholar 

  3. Ansari, S., A. Moshaverinia, S. H. Pi, A. Han, A. I. Abdelhamid, and H. H. Zadeh. Functionalization of scaffolds with chimeric anti-BMP-2 monoclonal antibodies for osseous regeneration. Biomaterials. 34:10191–10198, 2013.

    Article  CAS  PubMed  Google Scholar 

  4. Beier, J. P., F. F. Bitto, C. Lange, D. Klumpp, A. Arkudas, O. Bleiziffer, et al. Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell. Biol. Int. 35:397–406, 2011.

    Article  CAS  PubMed  Google Scholar 

  5. Boontheekula, T., H. J. Kongc, and D. J. Mooney. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 26:2455–2465, 2005.

    Article  Google Scholar 

  6. Borselli, C., C. A. Cezar, D. Shvartsman, H. H. Vandenburgh, and D. J. Mooney. The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials. 32:8905–8914, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borselli, C., H. Storrie, F. Benesch-Lee, D. Shvartsman, C. Cezar, J. W. Lichtman, H. H. Vandenburgh, and D. J. Mooney. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. USA 107:3287–3292, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bouhadir, K. H., K. Y. Lee, E. Alsberg, K. L. Damm, K. W. Anderson, and D. J. Mooney. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 17:945–950, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Bristow, M. R., R. Ginsburg, A. Strosberg, W. Montgomery, and W. Minobe. Pharmacology and inotropic potential of for- skolin in the human heart. J. Clin. Invest. 74:212–223, 1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cantu, D. A., P. Hematti, and W. J. Kao. Cell encapsulating biomaterial regulates mesenchymal stromal/stem cell differentiation and macrophage immuno- phenotype. Stem. Cell. Transl. Med. 1:740–749, 2012.

    Article  CAS  Google Scholar 

  11. Chen, F. M., J. Zhang, M. Zhang, Y. An, F. Chen, and Z. F. Wu. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials. 31:7892–7927, 2010.

    Article  CAS  PubMed  Google Scholar 

  12. Dezawa, M., H. Ishikawa, Y. Itokazu, T. Yoshihara, M. Hoshino, S. Takeda, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 309:314–317, 2005.

    Article  CAS  PubMed  Google Scholar 

  13. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell. 126:677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  14. Evangelista, M. B., S. X. Hsiong, R. Fernandes, P. Sampaio, H. Kong, C. C. Barrias, et al. Upregulation of bone cell differentiation through immobilization within a synthetic extracellular matrix. Biomaterials. 28:3644–3655, 2007.

    Article  CAS  PubMed  Google Scholar 

  15. Goncalves, M. A., J. Swildens, M. Holkers, A. Narain, G. P. van Nierop, M. J. van de Watering, et al. Genetic complementation of human muscle cells via directed stem cell fusion. Mol. Ther. 16:741–748, 2008.

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez, A., E. Aranda, D. Mezzano, and J. Garrido. Effects of diterpene forskolin on the release reaction and protein phosphorylation of human platelets. Cell. Biochem. Funct. 1:179–185, 1983.

    Article  CAS  PubMed  Google Scholar 

  17. Gronthos, S., M. Mankani, J. Brahim, P. G. Robey, and S. Shi. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 97:13625–13630, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huebsch, N., P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, and D. J. Mooney. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9:518–526, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iwata, T., M. Yamato, Z. Zhang, S. Mukobata, K. Washio, T. Ando, et al. Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J. Clin. Periodontol. 37:1088–1099, 2010.

    Article  CAS  PubMed  Google Scholar 

  20. Koning, M., M. C. Harmsen, M. J. van Luyn, and P. M. Werker. Current opportunities and challenges in skeletal muscle tissue engineering. J. Tissue Eng. Regen. Med. 3:407–415, 2009.

    Article  CAS  PubMed  Google Scholar 

  21. Krauss, R. S., F. Cole, U. Gaio, G. Takaesu, W. Zhang, and J. S. Kang. Close encounters: regulation of vertebrate skeletal myogenesis by cell-cell contact. J. Cell Sci. 118:2355–2362, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Kuang, S., M. A. Gillespie, and M. A. Rudnicki. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell. 2:22–31, 2008.

    Article  CAS  PubMed  Google Scholar 

  23. Litosch, I., T. H. Hudson, I. Mills, S. Y. Li, and J. N. Fain. Forskolin as an activator of cyclic AMP accumulation and lipolysis in rat adipocytes. Mol. Pharmacol. 22:109–115, 1982.

    CAS  PubMed  Google Scholar 

  24. Lu, H. H., J. M. Vo, H. S. Chin, J. Lin, M. Cozin, R. Tsay, et al. Controlled delivery of platelet-rich plasma growth factors for bone formation. J. Biomed. Mater. Res. A. 86:1128–1136, 2008.

    Article  PubMed  Google Scholar 

  25. Lubeck, D. P. The costs of musculoskeletal disease: health needs assessment and health economics. Best. Pract. Res. Clin. Rheumatol. 17:529–539, 2003.

    Article  PubMed  Google Scholar 

  26. Markusen, J. F., C. Mason, D. A. Hull, M. A. Town, A. B. Tabor, M. Clements, C. H. Boshoff, and P. Dunnill. Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads. Tissue Eng. Part A. 12:821–830, 2006.

    Article  CAS  Google Scholar 

  27. Mikos, A. G., S. W. Herring, P. Ochareon, J. Elisseeff, H. H. Lu, R. Kandel, et al. Engineering complex tissues. Tissue Eng. 12:3307–3339, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miura, M., S. Gronthos, M. Zhao, B. Lu, L. W. Fisher, P. G. Robey, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 100:5807–5812, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morosetti, R., M. Mirabella, C. Gliubizzi, A. Broccolini, L. De Angelis, E. Tagliafico, et al. MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Proc. Natl. Acad. Sci. USA 103:16995–17000, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moshaverinia, A., S. Ansari, C. Chen, X. Xu, K. Akiyama, M. L. Snead, et al. Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering. Biomaterials. 34:6572–6579, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moshaverinia, A., C. Chen, K. Akiyama, S. Ansari, X. Xu, W. W. Chee, et al. Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J. Mater. Sci: Mater. Med. 23:3041–3051, 2012.

    CAS  Google Scholar 

  32. Moshaverinia, A., C. Chen, K. Akiyama, X. Xu, W. W. Chee, S. R. Schricker, and S. Shi. Encapsulated dental-derived stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. J. Biomed. Mater. Res. Part. A. 101:3285–3294, 2013.

    Google Scholar 

  33. Moshaverinia, A., C. Chen, X. Xu, K. Akiyama, S. Ansari, H. H. Zadeh, and S. Shi. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Eng. Part A. 20:611–621, 2013.

    PubMed  PubMed Central  Google Scholar 

  34. Moshaverinia, A., C. Chen, X. Xu, S. Ansari, H. H. Zadeh, S. R. Schricker, et al. Regulation of the stem cell-host immune system interplay using hydrogel coencapsulation system with an anti-inflammatory drug. Adv Funct Mater. 15:2296–2307, 2015.

  35. Moshaverinia, A., X. Xu, C. Chen, S. Ansari, H. H. Zadeh, M. L. Snead, et al. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration. Biomaterials. 35:2642–2650, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murphy, W. L., T. C. McDevitt, and A. J. Engler. Materials as stem cell regulators. Nat. Mater. 13:547–557, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pirskanen, A., J. C. Kiefer, and S. D. Hauschka. IGFs, insulin, Shh, bFGF, and TGF-beta1 interact synergistically to pro- mote somite myogenesis in vitro. Dev. Biol. 224:189–203, 2000.

    Article  CAS  PubMed  Google Scholar 

  38. Puri, P. L., S. Iezzi, P. Stiegler, T. T. Chen, R. L. Schiltz, G. E. Muscat, A. Giordano, L. Kedes, J. Y. Wang, and V. Sartorelli. Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol. Cell. 8:885–897, 2001.

    Article  CAS  PubMed  Google Scholar 

  39. Re’em, T., O. Tsur-Gang, and S. Cohen. The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFb1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials. 31:6746–6755, 2010.

    Article  PubMed  Google Scholar 

  40. Rowley, J. A., G. Madlambayan, and D. J. Mooney. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 20:45–51, 1999.

    Article  CAS  PubMed  Google Scholar 

  41. Sachlos, E., and J. T. Czernuszka. Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffold. Euro. Cell. Mater. 5:29–40, 2003.

    CAS  Google Scholar 

  42. Salani, S., C. Donadoni, F. Rizzo, N. Bresolin, G. P. Comi, and S. Corti. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. J. Cell Mol. Med. 16:1353–1364, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seamon, K. B., W. Padgett, and J. W. Daly. Forskolin unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Natl. Acad. Sci. USA 78:3363–3367, 1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seed, J., and S. D. Hauschka. Clonal analysis of vertebrate myogenesis. VIII. Fibroblasts growth factor (FGF)-dependent and FGF-independent muscle colony types during chick wing development. Dev. Biol. 128:40–49, 1988.

    Article  CAS  PubMed  Google Scholar 

  45. Seo, B. M., M. Miura, S. Gronthos, P. M. Bartold, S. Batouli, J. Brahim, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 364:149–155, 2004.

    Article  CAS  PubMed  Google Scholar 

  46. Siebens, H. C. Musculoskeletal problems as comorbidities. Am. J. Phys. Med. Rehabil. 86:69–78, 2007.

    Article  Google Scholar 

  47. Silva, A. K., M. Juenet, A. Meddahi-Pellé, and D. Letourneur. Polysaccharide-based strategies for heart tissue engineering. Carbohydr. Polym. 116:267–277, 2015.

    Article  CAS  PubMed  Google Scholar 

  48. Tseng, A. S., F. B. Engel, and M. T. Keating. The GSK 3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol. 13:957–963, 2006.

    Article  CAS  PubMed  Google Scholar 

  49. Tseng, B. S., P. Zhao, J. S. Pattison, S. E. Gordon, J. A. Granchelli, R. W. Madsen, et al. Regenerated mdx mouse skeletal muscle shows differential mRNA expression. J. Appl. Physiol. 93:537–545, 2002.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, W., N. Ma, K. Kratz, X. Xu, Z. Li, T. Roch, et al. The influence of polymer scaffolds on cellular behaviour of bone marrow derived human mesenchymal stem cells. Clin. Hemorheol. Microcirc. 52:357–373, 2012.

    PubMed  Google Scholar 

  51. Weintraub, H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell. 75:1241–1244, 1993.

    Article  CAS  PubMed  Google Scholar 

  52. Wright, W. E., D. A. Sassoon, and V. K. Lin. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell. 56:607–617, 1989.

    Article  CAS  PubMed  Google Scholar 

  53. Xu, X., C. Chen, K. Akiyama, Y. Chai, A. D. Le, Z. Wang, and S. Shi. Gingivae contain neural-crest and mesoderm-derived mesenchymal stem cells. J. Dent. Res. 92:825–832, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Q., S. Shi, Y. Liu, J. Uyanne, Y. Shi, S. Shi, et al. mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J. Immunol. 183:7787–7798, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute of Dental, Craniofacial Research (K08DE023825 to A.M. and R01 DE017449 to S.S.). The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Moshaverinia.

Additional information

Associate Editor Akhilesh K Gaharwar oversaw the review of this article.

Sahar Ansari and Chider Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, S., Chen, C., Xu, X. et al. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Ann Biomed Eng 44, 1908–1920 (2016). https://doi.org/10.1007/s10439-016-1594-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1594-6

Keywords

Navigation