Annals of Biomedical Engineering

, Volume 44, Issue 6, pp 2076–2089 | Cite as

Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle

Emerging Trends in Biomaterials Research

Abstract

Skeletal muscle lost through trauma or disease has proven difficult to regenerate due to the challenge of differentiating human myoblasts into aligned, contractile tissue. To address this, we investigated microenvironmental cues that drive myoblast differentiation into aligned myotubes for potential applications in skeletal muscle repair, organ-on-chip disease models and actuators for soft robotics. We used a 2D in vitro system to systematically evaluate the role of extracellular matrix (ECM) protein composition and geometric patterning for controlling the formation of highly aligned myotubes. Specifically, we analyzed myotubes differentiated from murine C2C12 cells and human skeletal muscle derived cells (SkMDCs) on micropatterned lines of laminin compared to fibronectin, collagen type I, and collagen type IV. Results showed that laminin supported significantly greater myotube formation from both cells types, resulting in greater than twofold increase in myotube area on these surfaces compared to the other ECM proteins. Species specific differences revealed that human SkMDCs uniaxially aligned over a wide range of micropatterned line dimensions, while C2C12s required specific line widths and spacings to do the same. Future work will incorporate these results to engineer aligned human skeletal muscle tissue in 2D for in vitro applications in disease modeling, drug discovery and toxicity screening.

Keywords

Skeletal muscle Tissue engineering Extracellular matrix Microcontact printing 

Abbreviations

ECM

Extracellular matrix

LAM

Laminin

FN

Fibronectin

Col I

Collagen I

Col IV

Collagen IV

SkMDCs

Skeletal muscle derived cells

μCP

Microcontact printed

MFI

Myotube fusion index (nuclei/myotube)

PDMS

Polydimethylsiloxane

Supplementary material

10439_2016_1592_MOESM1_ESM.pdf (2.6 mb)
Supplementary material 1 (PDF 2626 kb)

References

  1. 1.
    Alford, P. W., A. W. Feinberg, S. P. Sheehy, and K. K. Parker. Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 31:3613–3621, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alford, P. W., A. P. Nesmith, J. N. Seywerd, A. Grosberg, and K. K. Parker. Vascular smooth muscle contractility depends on cell shape. Integr. Biol. 3:1063–1070, 2011.CrossRefGoogle Scholar
  3. 3.
    Altomare, L., M. Riehle, N. Gadegaard, M. Tanzi, and S. Fare. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int. J. Artif. Organs 33:535–543, 2010.PubMedGoogle Scholar
  4. 4.
    Bajaj, P., B. Reddy, Jr, L. Millet, C. Wei, P. Zorlutuna, G. Bao, and R. Bashir. Patterning the differentiation of C2C12 skeletal myoblasts. Integr. Biol. (Camb) 3:897–909, 2011.CrossRefGoogle Scholar
  5. 5.
    Boonen, K. J. M., and M. J. Post. The muscle stem cell Niche: regulation of satellite cells during regeneration. Tissue Eng. Part B-Rev. 14:419–431, 2008.CrossRefPubMedGoogle Scholar
  6. 6.
    Boonen, K. J., K. Y. Rosaria-Chak, F. P. Baaijens, D. W. van der Schaft, and M. J. Post. Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am. J. Physiol. Cell Physiol. 296:C1338–1345, 2009.CrossRefPubMedGoogle Scholar
  7. 7.
    Charge, S. B., and M. A. Rudnicki. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84:209–238, 2004.CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng, C. S., B. N. Davis, L. Madden, N. Bursac, and G. A. Truskey. Physiology and metabolism of tissue-engineered skeletal muscle. Exp. Biol. Med. (Maywood) 239:1203–1214, 2014.CrossRefGoogle Scholar
  9. 9.
    Dennis, R. G., and P. E. Kosnik, 2nd. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell. Dev. Biol. Anim. 36:327–335, 2000.CrossRefPubMedGoogle Scholar
  10. 10.
    Duffy, R. M., and A. W. Feinberg. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. 6:178–195, 2014.CrossRefPubMedGoogle Scholar
  11. 11.
    Durbeej, M., J. F. Talts, M. D. Henry, P. D. Yurchenco, K. P. Campbell, and P. Ekblom. Dystroglycan binding to laminin alpha1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro. Differentiation 69:121–134, 2001.CrossRefPubMedGoogle Scholar
  12. 12.
    Eberli, D., S. Soker, A. Atala, and J. J. Yoo. Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro. Methods 47:98–103, 2009.CrossRefPubMedGoogle Scholar
  13. 13.
    Engler, A. J., M. A. Griffin, S. Sen, C. G. Bonnetnann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166:877–887, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.CrossRefPubMedGoogle Scholar
  15. 15.
    Feinberg, A. W., P. W. Alford, H. Jin, C. M. Ripplinger, A. A. Werdich, S. P. Sheehy, A. Grosberg, and K. K. Parker. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials 33:5732–5741, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Feinberg, A. W., A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker. Muscular thin films for building actuators and powering devices. Science 317:1366–1370, 2007.CrossRefPubMedGoogle Scholar
  17. 17.
    Feinberg, A. W., and K. K. Parker. Surface-initiated assembly of protein nanofabrics. Nano Lett. 10:2184–2191, 2010.CrossRefPubMedGoogle Scholar
  18. 18.
    Flaibani, M., L. Boldrin, E. Cimetta, M. Piccoli, P. De Coppi, and N. Elvassore. Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation. Tissue Eng. Part A 15:2447–2457, 2009.CrossRefPubMedGoogle Scholar
  19. 19.
    Fujita, H., K. Shimizu, and E. Nagamori. Novel method for measuring active tension generation by C2C12 myotube using UV-crosslinked collagen film. Biotechnol. Bioeng. 106:482–489, 2010.PubMedGoogle Scholar
  20. 20.
    Gillies, A. R., and R. L. Lieber. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331, 2011.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Goudenege, S., Y. Lamarre, N. Dumont, J. Rousseau, J. Frenette, D. Skuk, and J. P. Tremblay. Laminin-111: a potential therapeutic agent for duchenne muscular dystrophy. Mol. Ther. 18:2155–2163, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Grosberg, A., P. W. Alford, M. L. McCain, and K. K. Parker. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165–4173, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Grounds, M. D., L. Sorokin, and J. White. Strength at the extracellular matrix-muscle interface. Scand. J. Med. Sci. Sports 15:381–391, 2005.CrossRefPubMedGoogle Scholar
  24. 24.
    Guo, X., K. Greene, N. Akanda, A. Smith, M. Stancescu, S. Lambert, H. Vandenburgh, and J. Hickman. In vitro differentiation of functional human skeletal myotubes in a defined system. Biomater. Sci. 2:131–138, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hald, E. S., K. E. Steucke, J. A. Reeves, Z. Win, and P. W. Alford. Microfluidic genipin deposition technique for extended culture of micropatterned vascular muscular thin films. J. Vis. Exp. 100:e52971, 2015.PubMedGoogle Scholar
  26. 26.
    Hayashi, Y. K., E. Engvall, E. Arikawa-Hirasawa, K. Goto, R. Koga, I. Nonaka, H. Sugita, and K. Arahata. Abnormal localization of laminin subunits in muscular dystrophies. J. Neurol. Sci. 119:53–64, 1993.CrossRefPubMedGoogle Scholar
  27. 27.
    Hinds, S., W. N. Bian, R. G. Dennis, and N. Bursac. The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials 32:3575–3583, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jallerat Q., J. M. Szymanski and A. W. Feinberg. Nano- and Microstructured ECM and Biomimetic Scaffolds for Cardiac Tissue Engineering. In: Bio-inspired Materials for Biomedical Engineering. Wiley 2014, pp. 195–226.Google Scholar
  29. 29.
    Ker, E. D., A. S. Nain, L. E. Weiss, J. Wang, J. Suhan, C. H. Amon, and P. G. Campbell. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32:8097–8107, 2011.CrossRefPubMedGoogle Scholar
  30. 30.
    Madden, L., M. Juhas, W. E. Kraus, G. A. Truskey, and N. Bursac. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife 4:e04885, 2015.CrossRefPubMedGoogle Scholar
  31. 31.
    Mase, Jr., V. J., J. R. Hsu, S. E. Wolf, J. C. Wenke, D. G. Baer, J. Owens, S. F. Badylak, and T. J. Walters. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics 33:511, 2010.PubMedGoogle Scholar
  32. 32.
    Nakamura, Y. N., H. Iwamoto, T. Yamaguchi, Y. Ono, Y. Nakanishi, S. Tabata, S. Nishimura, and T. Gotoh. Three-dimensional reconstruction of intramuscular collagen networks of bovine muscle: a demonstration by an immunohistochemical/confocal laser-scanning microscopic method. Anim. S. J. 78:445–447, 2007.CrossRefGoogle Scholar
  33. 33.
    Oak, S. A., Y. W. Zhou, and H. W. Jarrett. Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and Rac1. J. Biol. Chem. 278:39287–39295, 2003.CrossRefPubMedGoogle Scholar
  34. 34.
    Ott, H. C., T. S. Matthiesen, S.-K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. A. Taylor. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14:213–221, 2008.CrossRefPubMedGoogle Scholar
  35. 35.
    Palchesko, R. N., L. Zhang, Y. Sun, and A. W. Feinberg. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One 7:e51499, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pette, D., and G. Vrbova. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve 8:676–689, 1985.CrossRefPubMedGoogle Scholar
  37. 37.
    Powell, C. A., B. L. Smiley, J. Mills, and H. H. Vandenburgh. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. Cell Physiol. 283:C1557–1565, 2002.CrossRefPubMedGoogle Scholar
  38. 38.
    Ramaswamy, K. S., M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J. Physiol. 589:1195–1208, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rando, T. A. The dystrophin-glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 24:1575–1594, 2001.CrossRefPubMedGoogle Scholar
  40. 40.
    Rhim, C., D. A. Lowell, M. C. Reedy, D. H. Slentz, S. J. Zhang, W. E. Kraus, and G. A. Truskey. Morphology and ultrastructure of differentiating three-dimensional mammalian skeletal muscle in a collagen gel. Muscle Nerve 36:71–80, 2007.CrossRefPubMedGoogle Scholar
  41. 41.
    Sanger, J. W., J. Wang, Y. Fan, J. White, and J. M. Sanger. Assembly and dynamics of myofibrils. J. Biomed. Biotechnol. 2010:858606, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:676–682, 2012.CrossRefPubMedGoogle Scholar
  43. 43.
    Schultz, E. Fine structure of satellite cells in growing skeletal muscle. Am. J. Anat. 147:49–70, 1976.CrossRefPubMedGoogle Scholar
  44. 44.
    Sciandra, F., M. Bozzi, M. Bianchi, E. Pavoni, B. Giardina, and A. Brancaccio. Dystroglycan and muscular dystrophies related to the dystrophin-glycoprotein complex. Ann. Ist. Super. Sanita. 39:173–181, 2003.PubMedGoogle Scholar
  45. 45.
    Sun, Y., R. Duffy, A. Lee, and A. W. Feinberg. Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomater. 9:7885–7894, 2013.CrossRefPubMedGoogle Scholar
  46. 46.
    Sun, Y., R. Duffy, A. Lee, and A. W. Feinberg. Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomater. 9:7885–7894, 2013.CrossRefPubMedGoogle Scholar
  47. 47.
    Szymanski, J. M., Q. Jallerat, and A. W. Feinberg. ECM protein nanofibers and nanostructures engineered using surface-initiated assembly. J. Vis. Exp. 86:e51176, 2014.Google Scholar
  48. 48.
    Vandenburgh, H. H., P. Karlisch, and L. Farr. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev. Biol. 24:166–174, 1988.CrossRefPubMedGoogle Scholar
  49. 49.
    Vandenburgh, H., J. Shansky, F. Benesch-Lee, V. Barbata, J. Reid, L. Thorrez, R. Valentini, and G. Crawford. Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37:438–447, 2008.CrossRefPubMedGoogle Scholar
  50. 50.
    Wang, P. Y., H. T. Yu, and W. B. Tsai. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Biotechnol. Bioeng. 106:285–294, 2010.CrossRefPubMedGoogle Scholar
  51. 51.
    Wilschut, K. J., H. P. Haagsman, and B. A. Roelen. Extracellular matrix components direct porcine muscle stem cell behavior. Exp. Cell Res. 316:341–352, 2010.CrossRefPubMedGoogle Scholar
  52. 52.
    Wolf, M. T., K. A. Daly, J. E. Reing, and S. F. Badylak. Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 33:2916–2925, 2012.CrossRefPubMedGoogle Scholar
  53. 53.
    Yaffe, D., and O. Saxel. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727, 1977.CrossRefPubMedGoogle Scholar
  54. 54.
    Yamamoto, Y., A. Ito, M. Kato, Y. Kawabe, K. Shimizu, H. Fujita, E. Nagamori, and M. Kamihira. Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique. J. Biosci. Bioeng. 108:538–543, 2009.CrossRefPubMedGoogle Scholar
  55. 55.
    Zanotti, S., S. Saredi, A. Ruggieri, M. Fabbri, F. Blasevich, S. Romaggi, L. Morandi, and M. Mora. Altered extracellular matrix transcript expression and protein modulation in primary Duchenne muscular dystrophy myotubes. Matrix Biol. 26:615–624, 2007.CrossRefPubMedGoogle Scholar
  56. 56.
    Zatti, S., A. Zoso, E. Serena, C. Luni, E. Cimetta, and N. Elvassore. Micropatterning topology on soft substrates affects myoblast proliferation and differentiation. Langmuir 28:2718–2726, 2012.CrossRefPubMedGoogle Scholar
  57. 57.
    Zhao, Y., H. Zeng, J. Nam, and S. Agarwal. Fabrication of skeletal muscle constructs by topographic activation of cell alignment. Biotechnol. Bioeng. 102:624–631, 2009.CrossRefPubMedGoogle Scholar
  58. 58.
    Zou, K., M. De Lisio, M. A. Miller, D. Olatunbosun, E. Samuel, and M. D. Boppart. Laminin-111 improves skeletal muscle repair following eccentric exercise-induced damage. Med. Sci. Sports Exerc. 46:926–926, 2014.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Rebecca M. Duffy
    • 1
  • Yan Sun
    • 1
    • 2
  • Adam W. Feinberg
    • 1
    • 3
  1. 1.Regenerative Biomaterials and Therapeutics Group, Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
  3. 3.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations