Annals of Biomedical Engineering

, Volume 44, Issue 11, pp 3284–3294 | Cite as

A Computational Framework for Personalized Blood Flow Analysis in the Human Left Atrium

  • Tomohiro Otani
  • Abdullah Al-Issa
  • Amir Pourmorteza
  • Elliot R. McVeigh
  • Shigeo Wada
  • Hiroshi Ashikaga
Article

Abstract

Atrial fibrillation (AF), the most common human arrhythmia, is a marker of an increased risk of embolic stroke. However, recent studies suggest that AF may not be mechanistically responsible for the stroke events. An alternative explanation for the mechanism of intracardiac thrombosis and stroke in patients with AF is structural remodeling of the left atrium (LA). Nevertheless, a mechanistic link between LA structural remodeling and intracardiac thrombosis is unclear, because there is no clinically feasible methodology to evaluate the complex relationship between these two phenomena in individual patients. Computational fluid dynamics (CFD) is a powerful tool that could potentially link LA structural remodeling and intracardiac thrombosis in individual patients by evaluating the patient-specific LA blood flow characteristics. However, the lack of knowledge of the material and mechanical properties of the heart wall in specific patients makes it challenging to solve the complexity of fluid–structure interaction. In this study, our aim was to develop a clinically feasible methodology to perform personalized blood flow analysis within the heart. We propose an alternative computational approach to perform personalized blood flow analysis by providing the three-dimensional LA endocardial surface motion estimated from patient-specific cardiac CT images. In two patients (case 1 and 2), a four-dimensional displacement vector field was estimated using nonrigid registration. The LA blood outflow across the mitral valve (MV) was calculated from the LV volume, and the flow field within the LA was derived from the incompressible Navier–Stokes equation. The CFD results successfully captured characteristic features of LA blood flow observed clinically by transesophageal echocardiogram. The LA global flow characteristics and vortex structures also agreed well with previous reports. The time course of LAA emptying was similar in both cases, despite the substantial difference in the LA structure and function. We conclude that our CT-based, personalized LA blood flow analysis is a clinically feasible methodology that can be used to improve our understanding of the mechanism of intracardiac thrombosis and stroke in individual patients with LA structural remodeling.

Keywords

Image-based simulation Computed tomography Computational fluid dynamics Cardiac mechanics Left atrium 

Abbreviations

AF

Atrial fibrillation

CFD

Computational fluid dynamics

CT

Computed tomography

LA

Left atrium

LAA

Left atrial appendage

LV

Left ventricle

MV

Mitral valve

PV

Pulmonary vein

TEE

Transesophageal echocardiogram

3D

Three-dimensional

4D

Four-dimensional

Notes

Acknowledgments

The authors thank Satoshi Ii for valuable input as to the CFD methodology. The authors also thank Yuko Inoue and Susumu Tao for clinical input. This work was supported by research grants from the Japan Society for the Promotion of Science (JSPS) (Research Fellowship for Young Scientist A2616220, to Otani), Magic That Matters Fund for Cardiovascular Research (to Ashikaga) and Zegar Family Foundation (to Ashikaga).

Conflict of interest

None.

Supplementary material

10439_2016_1590_MOESM1_ESM.pdf (186 kb)
Supplementary material 1 (PDF 185 kb)

Supplementary material 2 (MP4 2514 kb)

Supplementary material 3 (MP4 2486 kb)

Supplementary material 4 (MP4 1868 kb)

Supplementary material 5 (MP4 1686 kb)

References

  1. 1.
    Agmon, Y., B. K. Khandheria, F. Gentile, and J. B. Seward. Echocardiographic assessment of the left atrial appendage. J. Am. Coll. Cardiol. 34:1867–1877, 1999. doi: 10.1016/S0735-1097(99)00472-6.CrossRefPubMedGoogle Scholar
  2. 2.
    Al-Issa, A., Y. Inoue, J. Cammin, Q. Tang, S. Nazarian, H. Calkins, E. K. Fishman, K. Taguchi, and H. Ashikaga. Regional function analysis of left atrial appendage using motion estimation CT and risk of stroke in patients with atrial fibrillation. Eur. Hear. J. Cardiovasc. Imaging jev207, 2015. doi: 10.1093/ehjci/jev207.
  3. 3.
    Benjamin, E. J., R. B. D’Agostino, A. J. Belanger, P. A. Wolf, and D. Levy. Left atrial size and the risk of stroke and death: the Framingham heart study. Circulation 92:835–841, 1995. doi: 10.1161/01.CIR.92.4.835.CrossRefPubMedGoogle Scholar
  4. 4.
    Blackshear, J. L., and J. A. Odell. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann. Thorac. Surg. 61:755–759, 1996. doi: 10.1016/0003-4975(95)00887-X.CrossRefPubMedGoogle Scholar
  5. 5.
    Brambatti, M., S. J. Connolly, M. R. Gold, C. A. Morillo, A. Capucci, C. Muto, C. P. Lau, I. C. Van Gelder, S. H. Hohnloser, M. Carlson, E. Fain, J. Nakamya, G. H. Mairesse, M. Halytska, W. Q. Deng, C. W. Israel, and J. S. Healey. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation 129:2094–2099, 2014. doi: 10.1161/CIRCULATIONAHA.113.007825.CrossRefPubMedGoogle Scholar
  6. 6.
    Chnafa, C., S. Mendez, and F. Nicoud. Image-based large-eddy simulation in a realistic left heart. Comput. Fluids 94:173–187, 2014. doi: 10.1016/j.compfluid.2014.01.030.CrossRefGoogle Scholar
  7. 7.
    Daccarett, M., T. J. Badger, N. Akoum, N. S. Burgon, C. Mahnkopf, G. Vergara, E. Kholmovski, C. J. McGann, D. Parker, J. Brachmann, R. S. MacLeod, and N. F. Marrouche. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J. Am. Coll. Cardiol. 57:831, 2011. doi: 10.1016/j.jacc.2010.09.049.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Daoud, E. G., T. V. Glotzer, D. G. Wyse, M. D. Ezekowitz, C. Hilker, J. Koehler, P. D. Ziegler, and T. Investigators. Temporal relationship of atrial tachyarrhythmias, cerebrovascular events, and systemic emboli based on stored device data: a subgroup analysis of TRENDS. Heart Rhythm 8:1416–1423, 2011. doi: 10.1016/j.hrthm.2011.04.022.CrossRefPubMedGoogle Scholar
  9. 9.
    Di Biase, L., P. Santangeli, M. Anselmino, P. Mohanty, I. Salvetti, S. Gili, R. Horton, J. E. Sanchez, R. Bai, S. Mohanty, A. Pump, M. Cereceda Brantes, G. J. Gallinghouse, J. D. Burkhardt, M. Cereceda Brantes, F. Cesarani, M. Scaglione, A. Natale, and F. Gaita. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J. Am. Coll. Cardiol. 60:531–538, 2012. doi: 10.1016/j.jacc.2012.04.032.CrossRefPubMedGoogle Scholar
  10. 10.
    Fatema, K., K. R. Bailey, G. W. Petty, I. Meissner, M. Osranek, A. A. Alsaileek, B. K. Khandheria, T. S. Tsang, and J. B. Seward. Increased left atrial volume index: potent biomarker for first-ever ischemic stroke. Mayo Clin. Proc. 83:1107–1115, 2008. doi: 10.4065/83.10.1107.CrossRefPubMedGoogle Scholar
  11. 11.
    Fyrenius, A., L. Wigström, T. Ebbers, M. Karlsson, J. Engvall, and A. F. Bolger. Three dimensional flow in the human left atrium. Heart 86:448–455, 2001. doi: 10.1136/heart.86.4.448.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Goubergrits, L., U. Kertzscher, K. Affeld, C. Petz, D. Stalling, and H. C. Hege. Numerical dye washout method as a tool for characterizing the heart valve flow: study of three standard mechanical heart valves. ASAIO J. 54:50–57, 2008. doi: 10.1097/MAT.0b013e31815c5e38.CrossRefPubMedGoogle Scholar
  13. 13.
    Healey, J. S., S. J. Connolly, M. R. Gold, C. W. Israel, I. C. Van Gelder, A. Capucci, C. P. Lau, E. Fain, S. Yang, C. Bailleul, C. A. Morillo, M. Carlson, E. Themeles, E. S. Kaufman, and S. H. Hohnloser. Subclinical atrial fibrillation and the risk of stroke. N. Engl. J. Med. 366:120–129, 2012. doi: 10.1056/NEJMoa1105575.CrossRefPubMedGoogle Scholar
  14. 14.
    Inoue, Y. Y., A. Alissa, I. M. Khurram, K. Fukumoto, M. Habibi, B. A. Venkatesh, S. L. Zimmerman, S. Nazarian, R. D. Berger, H. Calkins, J. A. Lima, and H. Ashikaga. Quantitative tissue-tracking cardiac magnetic resonance (CMR) of left atrial deformation and the risk of stroke in patients with atrial fibrillation. J. Am. Heart Assoc. 4:e001844–e001844, 2015. doi: 10.1161/JAHA.115.001844.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Khurram, I. M., J. Dewire, M. Mager, F. Maqbool, S. L. Zimmerman, V. Zipunnikov, R. Beinart, J. E. Marine, D. D. Spragg, R. D. Berger, H. Ashikaga, S. Nazarian, and H. Calkins. Relationship between left atrial appendage morphology and stroke in patients with atrial fibrillation. Heart Rhythm 10:1843–1849, 2013. doi: 10.1016/j.hrthm.2013.09.065.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim, T., A. Y. Cheer, and H. A. Dwyer. A simulated dye method for flow visualization with a computational model for blood flow. J. Biomech. 37:1125–1136, 2004. doi: 10.1016/j.jbiomech.2003.12.028.CrossRefPubMedGoogle Scholar
  17. 17.
    Kimura, T., S. Takatsuki, K. Inagawa, Y. Katsumata, T. Nishiyama, N. Nishiyama, K. Fukumoto, Y. Aizawa, Y. Tanimoto, K. Tanimoto, M. Jinzaki, and K. Fukuda. Anatomical characteristics of the left atrial appendage in cardiogenic stroke with low CHADS2 scores. Heart Rhythm 10:921–925, 2013. doi: 10.1016/j.hrthm.2013.01.036.CrossRefPubMedGoogle Scholar
  18. 18.
    Kizer, J. R., J. N. Bella, V. Palmieri, J. E. Liu, L. G. Best, E. T. Lee, M. J. Roman, and R. B. Devereux. Left atrial diameter as an independent predictor of first clinical cardiovascular events in middle-aged and elderly adults: the Strong Heart Study (SHS). Am. Heart J. 151:412–418, 2006. doi: 10.1016/j.ahj.2005.04.031.CrossRefPubMedGoogle Scholar
  19. 19.
    Koizumi, R., K. Funamoto, T. Hayase, Y. Kanke, M. Shibata, Y. Shiraishi, and T. Yambe. Numerical analysis of hemodynamic changes in the left atrium due to atrial fibrillation. J. Biomech. 48:472–478, 2015. doi: 10.1016/j.jbiomech.2014.12.025.CrossRefPubMedGoogle Scholar
  20. 20.
    Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997. doi: 10.1146/annurev.fluid.29.1.399.CrossRefGoogle Scholar
  21. 21.
    Miller, J. M., C. E. Rochitte, M. Dewey, A. Arbab-Zadeh, H. Niinuma, I. Gottlieb, N. Paul, M. E. Clouse, E. P. Shapiro, J. Hoe, A. C. Lardo, D. E. Bush, A. de Roos, C. Cox, J. Brinker, and J. A. C. Lima. Diagnostic performance of coronary angiography by 64-row CT. N. Engl. J. Med. 359:2324–2336, 2008. doi: 10.1056/NEJMoa0806576.CrossRefPubMedGoogle Scholar
  22. 22.
    Morales, H., I. Larrabide, A. Geers, L. San Roman, J. Blasco, J. Macho, and A. Frangi. A virtual coiling technique for image-based aneurysm models by dynamic path planning. IEEE Trans. Med. Imaging 1–11, 2012. doi: 10.1109/TMI.2012.2219626.
  23. 23.
    Ozer, N., L. Tokgozoglu, K. Ovunc, G. Kabakci, S. Aksoyek, K. Aytemir, and S. Kes. Left atrial appendage function in patients with cardioembolic stroke in sinus rhythm and atrial fibrillation. J. Am. Soc. Echocardiogr. 13:661–665, 2000. doi: 10.1067/mje.2000.105629.CrossRefPubMedGoogle Scholar
  24. 24.
    Piccini, J. P., and J. P. Daubert. Atrial fibrillation and stroke: it’s not necessarily all about the rhythm. Heart Rhythm 8:1424–1425, 2011. doi: 10.1016/j.hrthm.2011.05.005.CrossRefPubMedGoogle Scholar
  25. 25.
    Pourmorteza, A., K. H. Schuleri, D. A. Herzka, A. C. Lardo, and E. R. McVeigh. A new method for cardiac computed tomography regional function assessment: Stretch quantifier for endocardial engraved zones (SQUEEZ). Circ. cardiovasc. Imaging 5:243–250, 2012. doi: 10.1161/CIRCIMAGING.111.970061.CrossRefPubMedGoogle Scholar
  26. 26.
    Russo, C., Z. Jin, R. Liu, S. Iwata, A. Tugcu, M. Yoshita, S. Homma, M. S. V. Elkind, T. Rundek, C. Decarli, B. Wright, R. L. Sacco, and M. R. Di Tullio. LA volumes and reservoir function are associated with subclinical cerebrovascular disease: The CABL (Cardiovascular Abnormalities and Brain Lesions) study. JACC. Cardiovasc. Imaging 6:313–324, 2013. doi: 10.1016/j.jcmg.2012.10.019.Google Scholar
  27. 27.
    Seo, J. H., and R. Mittal. Effect of diastolic flow patterns on the function of the left ventricle. Phys. Fluids 25:110801, 2013. doi: 10.1063/1.4819067.CrossRefGoogle Scholar
  28. 28.
    Seo, J. H., V. Vedula, T. Abraham, A. C. Lardo, F. Dawoud, H. Luo, and R. Mittal. Effect of the mitral valve on diastolic flow patterns. Phys. Fluids 26:121901, 2014. doi: 10.1063/1.4904094.CrossRefGoogle Scholar
  29. 29.
    Smiseth, O. A., C. R. Thompson, K. Lohavanichbutr, H. Ling, J. G. Abel, R. T. Miyagishima, S. V. Lichtenstein, and J. Bowering. The pulmonary venous systolic flow pulse–its origin and relationship to left atrial pressure. J. Am. Coll. Cardiol. 34:802–809, 1999. doi: 10.1016/S0735-1097(99)00300-9.CrossRefPubMedGoogle Scholar
  30. 30.
    Tsang, T. S. M., W. P. Abhayaratna, M. E. Barnes, Y. Miyasaka, B. J. Gersh, K. R. Bailey, S. S. Cha, and J. B. Seward. Prediction of cardiovascular outcomes with left atrial size: Is volume superior to area or diameter? J. Am. Coll. Cardiol. 47:1018–1023, 2006. doi: 10.1016/j.jacc.2005.08.077.CrossRefPubMedGoogle Scholar
  31. 31.
    Vedula, V., R. George, L. Younes, and R. Mittal. Hemodynamics in the left atrium and its effect on ventricular flow patterns. J. Biomech. Eng. 2015. doi: 10.1115/1.4031487.PubMedGoogle Scholar
  32. 32.
    Wolf, P. A., R. D. Abbott, and W. B. Kannel. Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 22:983–988, 1991. doi: 10.1161/01.STR.22.8.983.CrossRefPubMedGoogle Scholar
  33. 33.
    Wong, J. M., C. C. Welles, F. Azarbal, M. A. Whooley, N. B. Schiller, and M. P. Turakhia. Relation of left atrial dysfunction to ischemic stroke in patients with coronary heart disease (from the Heart and Soul Study). Am. J. Cardiol. 113:1679–1684, 2014. doi: 10.1016/j.amjcard.2014.02.021.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang, L., and M. Gay. Characterizing left atrial appendage functions in sinus rhythm and atrial fibrillation using computational models. J. Biomech. 41:2515–2523, 2008. doi: 10.1016/j.jbiomech.2008.05.012.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Tomohiro Otani
    • 1
    • 3
  • Abdullah Al-Issa
    • 1
  • Amir Pourmorteza
    • 2
    • 4
  • Elliot R. McVeigh
    • 2
    • 5
  • Shigeo Wada
    • 3
  • Hiroshi Ashikaga
    • 1
    • 2
  1. 1.Cardiac Arrhythmia Service, Division of CardiologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Mechanical Science and BioengineeringOsaka University Graduate School of Engineering ScienceOsakaJapan
  4. 4.Department of Radiology and Imaging SciencesNational Institutes of Health Clinical CenterBethesdaUSA
  5. 5.Departments of Bioengineering, Medicine, RadiologyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations