Annals of Biomedical Engineering

, Volume 44, Issue 10, pp 2863–2873 | Cite as

A Concentric Tube Continuum Robot with Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting

  • Hao Su
  • Gang Li
  • D. Caleb Rucker
  • Robert J. Webster III
  • Gregory S. Fischer
Article

Abstract

This paper presents the design, modeling and experimental evaluation of a magnetic resonance imaging (MRI)-compatible concentric tube continuum robotic system. This system enables MRI-guided deployment of a precurved and steerable concentric tube continuum mechanism, and is suitable for clinical applications where a curved trajectory is needed. This compact 6 degree-of-freedom (DOF) robotic system is piezoelectrically-actuated, and allows simultaneous robot motion and imaging with no visually observable image artifact. The targeting accuracy is evaluated with optical tracking system and gelatin phantom under live MRI-guidance with Root Mean Square (RMS) errors of 1.94 and 2.17 mm respectively. Furthermore, we demonstrate that the robot has kinematic redundancy to reach the same target through different paths. This was evaluated in both free space and MRI-guided gelatin phantom trails, with RMS errors of 0.48 and 0.59 mm respectively. As the first of its kind, MRI-guided targeted concentric tube needle placements with ex vivo porcine liver are demonstrated with 4.64 mm RMS error through closed-loop control of the piezoelectrically-actuated robot.

Keywords

MR-conditional Concentric tube continuum robot Image-guided surgery 

References

  1. 1.
    Bergeles, C., A. H. Gosline, N. V. Vasilyev, P. J. Codd, P. J. del Nido, and P. E. Dupont. Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans. Robot. 31(1):67–84, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bergeles, C., and G.-Z. Yang. From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots. IEEE Trans. Biomed. Eng. 61(5):1565–1576, 2014.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen, Y., K.-W. Kwok, and Z. T. H. Tse. An MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention. Ann. Biomed. Eng. 42(9):1823–1833, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Diederich, C., R. Stafford, W. Nau, E. Burdette, R. Price, and J. Hazle. Transurethral ultrasound applicators with directional heating patterns for prostate thermal therapy: in vivo evaluation using magnetic resonance thermometry. Med. Phys. 31:405, 2004.CrossRefPubMedGoogle Scholar
  5. 5.
    Duerig, T., A. Pelton, and D. Stöckel. An overview of nitinol medical applications. Mater. Sci. Eng. A 273:149–160, 1999.CrossRefGoogle Scholar
  6. 6.
    Dupont, P., J. Lock, B. Itkowitz, and E. Butler. Design and control of concentric-tube robots. IEEE Trans. Robot. 26(2):209–225, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fischer, G. S., A. Krieger, I. Iordachita, C. Csoma, L. L. Whitcomb, and G. Fichtinger. MRI compatibility of robot actuation techniques—a comparative study. In: International Conference on Medical Image Computing and Computer Assisted Intervention, 2008, pp. 509–517.Google Scholar
  8. 8.
    Gilbert, H., J. Neimat, and R. Webster. Concentric tube robots as steerable needles: achieving follow-the-leader deployment. IEEE Trans. Robot. 31:246–258, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Glozman, D., and M. Shoham. Image-guided robotic flexible needle steering. IEEE Trans. Robot. 23:459 –467, 2007.Google Scholar
  10. 10.
    Ho, M., A. McMillan, J. Simard, R. Gullapalli, and J. Desai. Toward a SMA-actuated MRI-compatible neurosurgical robot. IEEE Trans. Robot. 28:213–222, 2012.CrossRefGoogle Scholar
  11. 11.
    Iranpanah, B., M. Chen, A. Patriciu, and S. Sirouspour. A pneumatically actuated target stabilization device for MRI-guided breast biopsy. IEEE/ASME Trans. Mechatron. 20:1288–1300.CrossRefGoogle Scholar
  12. 12.
    Krieger, A., S. Song, N. Bongjoon Cho, I. Iordachita, P. Guion, G. Fichtinger, and L. L. Whitcomb. Development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans. Mechatron., (99):1–12, 2012.Google Scholar
  13. 13.
    Lathrop, R., D. C. Rucker, R. J. Webster III, et al.. Guidance of a steerable cannula robot in soft tissue using preoperative imaging and conoscopic surface contour sensing. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 5601–5606, IEEE, 2010.Google Scholar
  14. 14.
    Li, G., H. Su, G. Cole, W. Shang, K. Harrington, A. Camilo, J. G. Pilitsis, and G. S. Fischer. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans. Biomed. Eng. 62(4):1077–1088, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lock, J., G. Laing, M. Mahvash, and P. E. Dupont. Quasistatic modeling of concentric tube robots with external loads. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2010, pp. 2325–2332.Google Scholar
  16. 16.
    Okazawa, S., R. Ebrahimi, J. Chuang, S. E. Salcudean, and R. Rohling. Hand-held steerable needle device. IEEE/ASME Trans. Mechatron. 10(3):285–296, 2005.CrossRefGoogle Scholar
  17. 17.
    Patel, N. A., T. van Katwijk, G. Li, P. Moreira, W. Shang, S. Misra, and G. S. Fischer. Closed-loop asymmetric-tip needle steering under continuous intraoperative MRI guidance. In: Engineering in Medicine and Biology Society, EMBC, Annual International Conference of the IEEE, pp. 6687 –6690, 2015.Google Scholar
  18. 18.
    Patriciu, A., A. Patriciu, D. Petrisor, M. Muntener, D. Mazilu, M. Schar, and D. Stoianovici. Automatic brachytherapy seed placement under MRI guidance. IEEE Trans. Biomed. Eng. 54(8):1499–1506, 2007.Google Scholar
  19. 19.
    Rucker, D. C., R. J. Webster, G. S. Chirikjian, and N. J. Cowan. Equilibrium conformations of concentric-tube continuum robots. Int. J. Robot. Res. 29(10):1263–1280, 2010.CrossRefGoogle Scholar
  20. 20.
    Rucker, D., B. Jones, and R. J. Webster III. A geometrically exact model for externally loaded concentric-tube continuum robots. IEEE Trans. Robot.  26:769 –780, 2010.Google Scholar
  21. 21.
    Shang, W., and G. S. Fischer. A high accuracy multi-image registration method for tracking MRI-guided robots. In: SPIE Medical Imaging (Image-Guided Procedures, Robotic Interventions, and Modeling Conference), (San Diego, USA), 2012.Google Scholar
  22. 22.
    Stoianovici, D., D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi. A new type of motor: pneumatic step motor. IEEE/ASME Trans. Mechatron. 12(1):98–106, 2007.CrossRefGoogle Scholar
  23. 23.
    Su, H., W. Shang, G. Cole, G. Li, K. Harrington, A. Camilo, J. Tokuda, C. M. Tempany, N. Hata, and G. S. Fischer. Piezoelectrically-actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE/ASME Trans. Mechatron. 99(3):1–13, 2015.Google Scholar
  24. 24.
    Su, H., D. Cardona, W. Shang, A. Camilo, G. Cole, D. Rucker, R. Webster, and G. Fischer. MRI-guided concentric tube continuum robot with piezoelectric actuation: a feasibility study. In: IEEE International Conference on Robotics and Automation (ICRA), 2012, pp. 1939–1945.Google Scholar
  25. 25.
    Sutherland, G. R., I. Latour, A. D. Greer, T. Fielding, G. Feil, and P. Newhook. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery 62:286–292, 2008, discussion 292–3.Google Scholar
  26. 26.
    Tsekos, N., A. Khanicheh, E. Christoforou, and C. Mavroidis. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu. Rev. Biomed. Eng. 9:351–387, 2007.CrossRefPubMedGoogle Scholar
  27. 27.
    Vandini, A., C. Bergeles, F.-Y. Lin, and G.-Z. Yang. Vision-based intraoperative shape sensing of concentric tube robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015, pp. 3505–3510.Google Scholar
  28. 28.
    Webster, R. J. III, J. S. Kim, N. Cowan, G. Chirikjian, and A. Okamura. Nonholonomic modeling of needle steering. Int. J. Robot. Res. 25(5–6):509–525, 2006.CrossRefGoogle Scholar
  29. 29.
    Webster, R. J., J. M. Romano, and N. J. Cowan. Mechanics of precurved-tube continuum robots. IEEE Trans. Robot. 25(1):67–78, 2009.CrossRefGoogle Scholar
  30. 30.
    Wu, K., L. Wu, and H. Ren. An image based targeting method to guide a tentacle-like curvilinear concentric tube robot. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2014.Google Scholar
  31. 31.
    Yakar, D., M. G. Schouten, D. G. H. Bosboom, J. O. Barentsz, T. W. J. Scheenen, and J. J. Futterer. Feasibility of a pneumatically actuated MR-compatible robot for transrectal prostate biopsy guidance. Radiology 260(1):241–247, 2011.CrossRefPubMedGoogle Scholar
  32. 32.
    Yang, B., U.-X. Tan, A. B. McMillan, R. Gullapalli, and J. P. Desai. Design and control of a 1-DOF MRI-compatible pneumatically actuated robot with long transmission lines. IEEE/ASME Trans. Mech. 16(6):1040–1048, 2011.CrossRefGoogle Scholar
  33. 33.
    Yang, B., S. Roys, U.-X. Tan, M. Philip, H. Richard, R. P. Gullapalli, and J. P. Desai. Design, development, and evaluation of a master–slave surgical system for breast biopsy under continuous MRI. Int. J.Robot. Res., 616–630, 2013.Google Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Hao Su
    • 1
  • Gang Li
    • 2
  • D. Caleb Rucker
    • 3
  • Robert J. Webster III
    • 4
  • Gregory S. Fischer
    • 2
  1. 1.Wyss Institute for Biologically Inspired Engineering and the John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Automation and Interventional Medicine (AIM) Robotics Laboratory, Department of Mechanical EngineeringWorcester Polytechnic InstituteWorcesterUSA
  3. 3.Vanderbilt Institute in Surgery and EngineeringVanderbilt UniversityNashvilleUSA
  4. 4.University of TennesseeKnoxvilleUSA

Personalised recommendations