Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 6, pp 1931–1945 | Cite as

Hypoxia-Sensitive Materials for Biomedical Applications

  • Jicheng Yu
  • Yuqi Zhang
  • Xiuli Hu
  • Grace Wright
  • Zhen GuEmail author
Emerging Trends in Biomaterials Research

Abstract

Hypoxia is a typical hallmark of various diseases, including cancer, ischemic diseases, and stroke. It is also associated with the disease progression. Therefore, it is critical to develop an effective strategy to target the hypoxic region for diagnosis and treatment. In this review, we summarize recent progress in the development of hypoxia-responsive systems for imaging, sensing and therapy. Two types of hypoxia-sensitive systems, the hypoxia inducible factor-1 based systems and bioreductive molecule based systems, were reviewed with comments on their advantages and limitations. Future opportunities and challenges are also discussed in the end.

Keywords

Hypoxia-responsive Drug delivery Bioimaging Hypoxia inducible factor-1 Bioreductive molecule 

Notes

Acknowledgment

This work was supported by the Grants from the American Diabetes Association (ADA) to Z.G. (1-14-JF-29 and 1-15-ACE-21) and the Grant from NC TraCS, NIH’s Clinical and Translational Science Awards (CTSA, NIH Grant 1UL1TR001111) at UNC-CH.

Conflicts of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Abbattista, M. R., S. M. Jamieson, Y. Gu, J. E. Nickel, S. M. Pullen, A. V. Patterson, W. R. Wilson, and C. P. Guise. Pre-clinical activity of PR-104 as monotherapy and in combination with sorafenib in hepatocellular carcinoma. Cancer Biol. Ther. 16:610–622, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ahn, G.-O., K. J. Botting, A. V. Patterson, D. C. Ware, M. Tercel, and W. R. Wilson. Radiolytic and cellular reduction of a novel hypoxia-activated cobalt (III) prodrug of a chloromethylbenzindoline DNA minor groove alkylator. Biochem. Pharmacol. 71:1683–1694, 2006.PubMedCrossRefGoogle Scholar
  3. 3.
    Arany, Z., S.-Y. Foo, Y. Ma, J. L. Ruas, A. Bommi-Reddy, G. Girnun, M. Cooper, D. Laznik, J. Chinsomboon, and S. M. Rangwala. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1&agr. Nature 451:1008–1012, 2008.PubMedCrossRefGoogle Scholar
  4. 4.
    Bhang, S. H., J. H. Kim, H. S. Yang, W.-G. La, T.-J. Lee, G. H. Kim, H. A. Kim, M. Lee, and B.-S. Kim. Combined gene therapy with hypoxia-inducible factor-1α and heme oxygenase-1 for therapeutic angiogenesis. Tissue Eng. Part A 17:915–926, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    Binley, K., Z. Askham, L. Martin, H. Spearman, D. Day, S. Kingsman, and S. Naylor. Hypoxia-mediated tumour targeting. Gene Ther. 10:540–549, 2003.PubMedCrossRefGoogle Scholar
  6. 6.
    Borad, M. J., S. G. Reddy, N. Bahary, H. E. Uronis, D. Sigal, A. L. Cohn, W. R. Schelman, J. Stephenson, E. G. Chiorean, and P. J. Rosen. Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer. J. Clin. Oncol. 33:1475–1481, 2015.PubMedCrossRefGoogle Scholar
  7. 7.
    Bowers, D. T., M. L. Tanes, A. Das, Y. Lin, N. A. Keane, R. A. Neal, M. E. Ogle, K. L. Brayman, C. L. Fraser, and E. A. Botchwey. Spatiotemporal oxygen sensing using dual emissive boron dye-polylactide nanofibers. ACS Nano 8:12080–12091, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Brown, J. M., and W. R. Wilson. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4:437–447, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Bruehlmeier, M., U. Roelcke, P. A. Schubiger, and S. M. Ametamey. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J. Nucl. Med. 45:1851–1859, 2004.PubMedGoogle Scholar
  10. 10.
    Carreau, A., B. E. Hafny-Rahbi, A. Matejuk, C. Grillon, and C. Kieda. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell Mol. Med. 15:1239–1253, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Choi, B. H., Y. Ha, C.-H. Ahn, X. Huang, J.-M. Kim, S. R. Park, H. Park, H. C. Park, S. W. Kim, and M. Lee. A hypoxia-inducible gene expression system using erythropoietin 3′ untranslated region for the gene therapy of rat spinal cord injury. Neurosci. Lett. 412:118–122, 2007.PubMedCrossRefGoogle Scholar
  12. 12.
    Coleman, C. N. Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity. J. Natl. Cancer Inst. 80:310–317, 1988.PubMedCrossRefGoogle Scholar
  13. 13.
    Cui, L., Y. Zhong, W. Zhu, Y. Xu, Q. Du, X. Wang, X. Qian, and Y. Xiao. A new prodrug-derived ratiometric fluorescent probe for hypoxia: high selectivity of nitroreductase and imaging in tumor cell. Org. Lett. 13:928–931, 2011.PubMedCrossRefGoogle Scholar
  14. 14.
    Cullberg, K. B., J. Olholm, S. K. Paulsen, C. B. Foldager, M. Lind, B. Richelsen, and S. B. Pedersen. Resveratrol has inhibitory effects on the hypoxia-induced inflammation and angiogenesis in human adipose tissue in vitro. Eur. J. Pharm. Sci. 49:251–257, 2013.PubMedCrossRefGoogle Scholar
  15. 15.
    Dachs, G. U., A. V. Patterson, J. D. Firth, P. J. Ratcliffe, K. S. Townsend, I. J. Stratford, and A. L. Harris. Targeting gene expression to hypoxic tumor cells. Nat. Med. 3:515–520, 1997.PubMedCrossRefGoogle Scholar
  16. 16.
    Di Gregorio, E., G. Ferrauto, E. Gianolio, S. Lanzardo, C. Carrera, F. Fedeli, and S. Aime. An MRI method to map tumor hypoxia using red blood cells loaded with a pO2-responsive Gd-agent. ACS Nano 9:8239–8248, 2015.PubMedCrossRefGoogle Scholar
  17. 17.
    Di, J., J. Yu, Y. Ye, D. Ranson, A. Jindal, and Z. Gu. Engineering synthetic insulin-secreting cells using hyaluronic acid microgels integrated with glucose-responsive nanoparticles. Cell. Mol. Bioeng. 8:445–454, 2015.CrossRefGoogle Scholar
  18. 18.
    Do, Q. N., J. S. Ratnakar, Z. Kovács, and A. D. Sherry. Redox-and hypoxia-responsive MRI Contrast agents. ChemMedChem 9:1116–1129, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Duan, J.-X., H. Jiao, J. Kaizerman, T. Stanton, J. W. Evans, L. Lan, G. Lorente, M. Banica, D. Jung, and J. Wang. Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J. Med. Chem. 51:2412–2420, 2008.PubMedCrossRefGoogle Scholar
  20. 20.
    Edgar, L. J., R. N. Vellanki, A. Halupa, D. Hedley, B. G. Wouters, and M. Nitz. Identification of hypoxic cells using an organotellurium tag compatible with mass cytometry. Angew. Chem. Int. Ed. 53:11473–11477, 2014.CrossRefGoogle Scholar
  21. 21.
    Eschmann, S.-M., F. Paulsen, M. Reimold, H. Dittmann, S. Welz, G. Reischl, H.-J. Machulla, and R. Bares. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J. Nucl. Med. 46:253–260, 2005.PubMedGoogle Scholar
  22. 22.
    Everett, S. A., E. Swann, M. A. Naylor, M. R. Stratford, K. B. Patel, N. Tian, R. G. Newman, B. Vojnovic, C. J. Moody, and P. Wardman. Modifying rates of reductive elimination of leaving groups from indolequinone prodrugs: a key factor in controlling hypoxia-selective drug release. Biochem. Pharmacol. 63:1629–1639, 2002.PubMedCrossRefGoogle Scholar
  23. 23.
    Guise, C. P., A. M. Mowday, A. Ashoorzadeh, R. Yuan, W.-H. Lin, D.-H. Wu, J. B. Smaill, A. V. Patterson, and K. Ding. Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia. Chin. J. Cancer 33:80, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Haffty, B. G., Y. H. Son, C. T. Sasaki, R. Papac, D. Fischer, S. Rockwell, A. Sartorelli, and J. J. Fischer. Mitomycin C as an adjunct to postoperative radiation therapy in squamous cell carcinoma of the head and neck: results from two randomized clinical trials. Int. J. Radiat. Oncol. Biol. Phys. 27:241–250, 1993.PubMedCrossRefGoogle Scholar
  25. 25.
    Haffty, B. G., Y. H. Son, L. D. Wilson, R. Papac, D. Fischer, S. Rockwell, A. C. Sartorelli, D. Ross, C. T. Sasaki, and J. J. Fischer. Bioreductive alkylating agent porfiromycin in combination with radiation therapy for the management of squamous cell carcinoma of the head and neck. Radiat. Oncol. Investig. 5:235–245, 1997.PubMedCrossRefGoogle Scholar
  26. 26.
    Haffty, B. G., L. D. Wilson, Y. H. Son, E. I. Cho, R. J. Papac, D. B. Fischer, S. Rockwell, A. C. Sartorelli, D. A. Ross, and C. T. Sasaki. Concurrent chemo-radiotherapy with mitomycin C compared with porfiromycin in squamous cell cancer of the head and neck: final results of a randomized clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 61:119–128, 2005.PubMedCrossRefGoogle Scholar
  27. 27.
    Harris, A. L. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2:38–47, 2002.PubMedCrossRefGoogle Scholar
  28. 28.
    Hendricksen, K., E. Cornel, T. de Reijke, H. Arentsen, S. Chawla, and J. Witjes. Phase 2 study of adjuvant intravesical instillations of apaziquone for high risk nonmuscle invasive bladder cancer. J. Urol. 187:1195–1199, 2012.PubMedCrossRefGoogle Scholar
  29. 29.
    Hodgkiss, R. J. Use of 2-nitroimidazoles as bioreductive markers for tumour hypoxia. Anti-Cancer Drug Des. 13:687–702, 1998.Google Scholar
  30. 30.
    Hong, S. W., J. W. Yoo, H. S. Kang, S. Kim, and D.-K. Lee. HIF-1α-dependent gene expression program during the nucleic acid-triggered antiviral innate immune responses. Mol. Cells 27:243–250, 2009.PubMedCrossRefGoogle Scholar
  31. 31.
    Hu, Q., P. S. Katti, and Z. Gu. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6:12273–12286, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hu Q., Sun W., Wang C., Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev. 2015.Google Scholar
  33. 33.
    Huang, B., A. Desai, S. Tang, T. P. Thomas, and J. R. Baker, Jr. The synthesis of ac (RGDyK) targeted SN38 prodrug with an indolequinone structure for bioreductive drug release. Org. Lett. 12:1384–1387, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Huang, L. E., J. Gu, M. Schau, and H. F. Bunn. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 95:7987–7992, 1998.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Inman, B. A., P. R. Stauffer, O. A. Craciunescu, P. F. Maccarini, M. W. Dewhirst, and Z. Vujaskovic. A pilot clinical trial of intravesical mitomycin-C and external deep pelvic hyperthermia for non-muscle-invasive bladder cancer. Int. J. Hyperth. 30:171–175, 2014.CrossRefGoogle Scholar
  36. 36.
    Jiang, B.-H., E. Rue, G. L. Wang, R. Roe, and G. L. Semenza. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271:17771–17778, 1996.PubMedCrossRefGoogle Scholar
  37. 37.
    Jiang, B.-H., G. L. Semenza, C. Bauer, and H. H. Marti. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271:1172–1180, 1996.Google Scholar
  38. 38.
    Jiang, B.-H., J. Z. Zheng, S. W. Leung, R. Roe, and G. L. Semenza. Transactivation and inhibitory domains of hypoxia-inducible factor 1α modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 272:19253–19260, 1997.PubMedCrossRefGoogle Scholar
  39. 39.
    Kennedy, K. A., S. Rockwell, and A. C. Sartorelli. Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells. Cancer Res. 40:2356–2360, 1980.PubMedGoogle Scholar
  40. 40.
    Kim, H. A., K. Kim, S. W. Kim, and M. Lee. Transcriptional and post-translational regulatory system for hypoxia specific gene expression using the erythropoietin enhancer and the oxygen-dependent degradation domain. J. Controll. Release 121:218–224, 2007.CrossRefGoogle Scholar
  41. 41.
    Kim, H. A., S. Lim, H.-H. Moon, S. W. Kim, K.-C. Hwang, M. Lee, S. H. Kim, and D. Choi. Hypoxia-inducible vascular endothelial growth factor gene therapy using the oxygen-dependent degradation domain in myocardial ischemia. Pharm. Res. 27:2075–2084, 2010.PubMedCrossRefGoogle Scholar
  42. 42.
    Kiyose, K., K. Hanaoka, D. Oushiki, T. Nakamura, M. Kajimura, M. Suematsu, H. Nishimatsu, T. Yamane, T. Terai, and Y. Hirata. Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J. Am. Chem. Soc. 132:15846–15848, 2010.PubMedCrossRefGoogle Scholar
  43. 43.
    Kizaka-Kondoh, S., and H. Konse-Nagasawa. Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia. Cancer Sci. 100:1366–1373, 2009.PubMedCrossRefGoogle Scholar
  44. 44.
    Kuchimaru, T., T. Kadonosono, S. Tanaka, T. Ushiki, M. Hiraoka, and S. Kizaka-Kondoh. In vivo imaging of HIF-active tumors by an oxygen-dependent degradation protein probe with an interchangeable labeling system. PLoS One 5:e15736, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lee, M., M. Bikram, S. Oh, D. A. Bull, and S. W. Kim. Sp1-dependent regulation of the RTP801 promoter and its application to hypoxia-inducible VEGF plasmid for ischemic disease. Pharm. Res. 21:736–741, 2004.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee, M., D. Choi, M. J. Choi, J. H. Jeong, W. J. Kim, S. Oh, Y.-H. Kim, D. A. Bull, and S. W. Kim. Hypoxia-inducible gene expression system using the erythropoietin enhancer and 3′-untranslated region for the VEGF gene therapy. J. Controll. Release 115:113–119, 2006.CrossRefGoogle Scholar
  47. 47.
    Lee, M., E. S. Lee, Y. S. Kim, B. H. Choi, S. R. Park, H. S. Park, H. C. Park, S. W. Kim, and Y. Ha. Ischemic injury-specific gene expression in the rat spinal cord injury model using hypoxia-inducible system. Spine 30:2729–2734, 2005.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee, N. Y., J. G. Mechalakos, S. Nehmeh, Z. Lin, O. D. Squire, S. Cai, K. Chan, P. B. Zanzonico, C. Greco, and C. C. Ling. Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 70:2–13, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lee, M., J. Rentz, M. Bikram, S. Han, D. Bull, and S. Kim. Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther. 10:1535–1542, 2003.PubMedCrossRefGoogle Scholar
  50. 50.
    Li, W., Y. Li, S. Guan, J. Fan, C. F. Cheng, A. M. Bright, C. Chinn, M. Chen, and D. T. Woodley. Extracellular heat shock protein-90α: linking hypoxia to skin cell motility and wound healing. EMBO J. 26:1221–1233, 2007.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Li, Y., Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging. J. Am. Chem. Soc. 137:6407–6416, 2015.PubMedCrossRefGoogle Scholar
  52. 52.
    Lin, Q., C. Bao, Y. Yang, Q. Liang, D. Zhang, S. Cheng, and L. Zhu. Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles. Adv. Mater. 25:1981–1986, 2013.PubMedCrossRefGoogle Scholar
  53. 53.
    Liu, J., Y. Liu, W. Bu, J. Bu, Y. Sun, J. Du, and J. Shi. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 136:9701–9709, 2014.PubMedCrossRefGoogle Scholar
  54. 54.
    Liu, Q., J. D. Sun, J. Wang, D. Ahluwalia, A. F. Baker, L. D. Cranmer, D. Ferraro, Y. Wang, J.-X. Duan, and W. S. Ammons. TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules. Cancer Chemother. Pharmacol. 69:1487–1498, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Liu, H., R. Zhang, Y. Niu, Y. Li, C. Qiao, J. Weng, J. Li, X. Zhang, Z. Xiao, and X. Zhang. Development of hypoxia-triggered prodrug micelles as doxorubicin carriers for tumor therapy. RSC Adv. 5:20848–20857, 2015.CrossRefGoogle Scholar
  56. 56.
    Lu, Y., W. Sun, and Z. Gu. Stimuli-responsive nanomaterials for therapeutic protein delivery. J. Controll. Release 194:1–19, 2014.CrossRefGoogle Scholar
  57. 57.
    Manesh, D. M., J. El-Hoss, K. Evans, J. Richmond, C. E. Toscan, L. S. Bracken, A. Hedrick, R. Sutton, G. M. Marshall, and W. R. Wilson. AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia. Blood 126:1193–1202, 2015.CrossRefGoogle Scholar
  58. 58.
    McKeage, M. J., Y. Gu, W. R. Wilson, A. Hill, K. Amies, T. J. Melink, and M. B. Jameson. A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients. BMC Cancer 11:432, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Mitragotri, S., D. G. Anderson, X. Chen, E. K. Chow, D. Ho, A. V. Kabanov, J. M. Karp, K. Kataoka, C. A. Mirkin, and S. H. Petrosko. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 9:6644–6654, 2015.PubMedCrossRefGoogle Scholar
  60. 60.
    Nunn, A., K. Linder, and H. W. Strauss. Nitroimidazoles and imaging hypoxia. Eur. J. Nucl. Med. 22:265–280, 1995.PubMedCrossRefGoogle Scholar
  61. 61.
    Patterson, A. V., D. M. Ferry, S. J. Edmunds, Y. Gu, R. S. Singleton, K. Patel, S. M. Pullen, K. O. Hicks, S. P. Syddall, and G. J. Atwell. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin. Cancer Res. 13:3922–3932, 2007.PubMedCrossRefGoogle Scholar
  62. 62.
    Perche, F., S. Biswas, T. Wang, L. Zhu, and V. Torchilin. Hypoxia-targeted siRNA delivery. Angew. Chem. 126:3430–3434, 2014.CrossRefGoogle Scholar
  63. 63.
    Phillips, R. M., H. R. Hendriks, and G. J. Peters. EO9 (Apaziquone): from the clinic to the laboratory and back again. Br. J. Pharmacol. 168:11–18, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Plumb, J. A., and P. Workman. Unusually marked hypoxic sensitization to indoloquinone E09 and mitomycin C in a human colon-tumour cell line that lacks DT-diaphorase activity. Int. J. Cancer 56:134–139, 1994.PubMedCrossRefGoogle Scholar
  65. 65.
    Qian, C., J. Yu, Y. Chen, Q. Hu, X. Xiao, W. Sun, C. Wang, P. Feng, Q. Shen, and Z. Gu. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater. 2016. doi: 10.1002/adma.201505869.Google Scholar
  66. 66.
    Rasey, J. S., P. D. Hofstrand, L. K. Chin, and T. J. Tewson. Characterization of [18F] fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia. J. Nucl. Med. 40:1072, 1999.PubMedGoogle Scholar
  67. 67.
    Rhim, T., D. Y. Lee, and M. Lee. Hypoxia as a target for tissue specific gene therapy. J. Controll. Release 172:484–494, 2013.CrossRefGoogle Scholar
  68. 68.
    Rockwell, S., S. R. Keyes, and A. C. Sartorelli. Preclinical studies of porfiromycin as an adjunct to radiotherapy. Radiat. Res. 116:100–113, 1988.PubMedCrossRefGoogle Scholar
  69. 69.
    Rojas-Quijano, F. A., G. Tircsó, E. Tircsóné Benyó, Z. Baranyai, H. Tran Hoang, F. K. Kálmán, P. K. Gulaka, V. D. Kodibagkar, S. Aime, and Z. Kovács. Synthesis and characterization of a hypoxia-sensitive MRI probe. Chem. Eur. J. 18:9669–9676, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Schoonman, G. G., P. S. Sándor, A. C. Nirkko, T. Lange, T. Jaermann, U. Dydak, C. Kremer, M. D. Ferrari, P. Boesiger, and R. W. Baumgartner. Hypoxia-induced acute mountain sickness is associated with intracellular cerebral edema: a 3 T magnetic resonance imaging study. J. Cereb. Blood Flow Metab. 28:198–206, 2008.PubMedCrossRefGoogle Scholar
  71. 71.
    Semenza, G. L., P. H. Roth, H.-M. Fang, and G. L. Wang. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269:23757–23763, 1994.PubMedGoogle Scholar
  72. 72.
    Shibata, T., N. Akiyama, M. Noda, K. Sasai, and M. Hiraoka. Enhancement of gene expression under hypoxic conditions using fragments of the human vascular endothelial growth factor and the erythropoietin genes. Int. J. Radiat. Oncol. Biol. Phys. 42:913–916, 1998.PubMedCrossRefGoogle Scholar
  73. 73.
    Shibata, T., A. Giaccia, and J. Brown. Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Ther. 7:493–498, 2000.PubMedCrossRefGoogle Scholar
  74. 74.
    Singleton, R. S., C. P. Guise, D. M. Ferry, S. M. Pullen, M. J. Dorie, J. M. Brown, A. V. Patterson, and W. R. Wilson. DNA cross-links in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism, and cytotoxicity. Cancer Res. 69:3884–3891, 2009.PubMedCrossRefGoogle Scholar
  75. 75.
    Sun, J. D., Q. Liu, J. Wang, D. Ahluwalia, D. Ferraro, Y. Wang, J.-X. Duan, W. S. Ammons, J. G. Curd, and M. D. Matteucci. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin. Cancer Res. 18:758–770, 2012.PubMedCrossRefGoogle Scholar
  76. 76.
    Sun, W., Y. Lu, and Z. Gu. Advances in anticancer protein delivery using micro-/nanoparticles. Part. Syst. Charact. 31:1204–1222, 2014.CrossRefGoogle Scholar
  77. 77.
    Tai, W., R. Mo, J. Di, V. Subramanian, X. Gu, J. B. Buse, and Z. Gu. Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin. Biomacromolecules 15:3495–3502, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Takasawa, M., R. R. Moustafa, and J.-C. Baron. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke 39:1629–1637, 2008.PubMedCrossRefGoogle Scholar
  79. 79.
    Tanabe, K., H. Harada, M. Narazaki, K. Tanaka, K. Inafuku, H. Komatsu, T. Ito, H. Yamada, Y. Chujo, and T. Matsuda. Monitoring of biological one-electron reduction by 19F NMR using hypoxia selective activation of an 19F-labeled indolequinone derivative. J. Am. Chem. Soc. 131:15982–15983, 2009.PubMedCrossRefGoogle Scholar
  80. 80.
    Thomson, P. I., V. L. Camus, Y. Hu, and C. J. Campbell. Series of quinone-containing nanosensors for biologically relevant redox potential determination by surface-enhanced Raman spectroscopy. Anal. Chem. 87:4719–4725, 2015.PubMedCrossRefGoogle Scholar
  81. 81.
    Tomasz, M., and Y. Palom. The mitomycin bioreductive antitumor agents: cross-linking and alkylation of DNA as the molecular basis of their activity. Pharmacol. Ther. 76:73–87, 1997.PubMedCrossRefGoogle Scholar
  82. 82.
    Tracy, J. W., and L. T. Webster. Drugs used in the chemotherapy of protozoal infections. The pharmacological basis of therapeutics (9th ed.). New York: McGraw-Hill Book Co., pp. 987–1008, 1996.Google Scholar
  83. 83.
    Tsuzuki, Y., D. Fukumura, B. Oosthuyse, C. Koike, P. Carmeliet, and R. K. Jain. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1α → hypoxia response element → VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 60:6248–6252, 2000.PubMedGoogle Scholar
  84. 84.
    van der Heijden, A. G., P. M. Moonen, E. B. Cornel, H. Vergunst, T. M. de Reijke, E. van Boven, E. J. Barten, R. Puri, C. K. van Kalken, and J. A. Witjes. Phase II marker lesion study with intravesical instillation of apaziquone for superficial bladder cancer: toxicity and marker response. J. Urol. 176:1349–1353, 2006.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang, G. L., B.-H. Jiang, E. A. Rue, and G. L. Semenza. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92:5510–5514, 1995.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Wang, G. L., and G. L. Semenza. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. 90:4304–4308, 1993.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wang, X.-D., J. A. Stolwijk, T. Lang, M. Sperber, R. J. Meier, J. Wegener, and O. S. Wolfbeis. Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J. Am. Chem. Soc. 134:17011–17014, 2012.PubMedCrossRefGoogle Scholar
  88. 88.
    Ware, D. C., B. D. Palmer, W. R. Wilson, and W. A. Denny. Hypoxia-selective antitumor agents. 7. Metal complexes of aliphatic mustards as a new class of hypoxia-selective cytotoxins. Synthesis and evaluation of cobalt (III) complexes of bidentate mustards. J. Med. Chem. 36:1839–1846, 1993.PubMedCrossRefGoogle Scholar
  89. 89.
    Weiss, G. J., J. R. Infante, E. G. Chiorean, M. J. Borad, J. C. Bendell, J. R. Molina, R. Tibes, R. K. Ramanathan, K. Lewandowski, and S. F. Jones. Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clin. Cancer Res. 17:2997–3004, 2011.PubMedCrossRefGoogle Scholar
  90. 90.
    Won, Y.-W., M. Lee, H. A. Kim, D. A. Bull, and S. W. Kim. Post-translational regulated and hypoxia-responsible VEGF plasmid for efficient secretion. J. Controll. Release 160:525–531, 2012.CrossRefGoogle Scholar
  91. 91.
    Ye, Y., J. Yu, N.-Y. Nguyen, J. B. Buse, and Z. Gu. Microneedle integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv. Mater. 2016. doi: 10.1002/adma.201506025.Google Scholar
  92. 92.
    Yockman, J., D. Choi, M. Whitten, C. Chang, A. Kastenmeier, H. Erickson, A. Albanil, M. Lee, S. Kim, and D. Bull. Polymeric gene delivery of ischemia-inducible VEGF significantly attenuates infarct size and apoptosis following myocardial infarct. Gene Ther. 16:127–135, 2009.PubMedCrossRefGoogle Scholar
  93. 93.
    Yu, J., Y. Zhang, Y. Ye, R. DiSanto, W. Sun, D. Ranson, F. S. Ligler, J. B. Buse, and Z. Gu. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA 112:8260–8265, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Yuan, J., Y.-Q. Xu, N.-N. Zhou, R. Wang, X.-H. Qian, and Y.-F. Xu. A highly selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase and hypoxic tumor cell imaging. RSC Adv. 4:56207–56210, 2014.CrossRefGoogle Scholar
  95. 95.
    Zhang, G., G. M. Palmer, M. W. Dewhirst, and C. L. Fraser. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat. Mater. 8:747–751, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zhang, Z., J. Yan, Y. Chang, S. S. Yan, and H. Shi. Hypoxia inducible factor-1 as a target for neurodegenerative diseases. Curr. Med. Chem. 18:4335, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Zhao, Y., S. Wu, J. Wu, P. Jia, S. Gao, X. Yan, and Y. Wang. Introduction of hypoxia-targeting p53 fusion protein for the selective therapy of non-small cell lung cancer. Cancer Biol. Ther. 11:95–107, 2011.PubMedCrossRefGoogle Scholar
  98. 98.
    Zheng, X., H. Tang, C. Xie, J. Zhang, W. Wu, and X. Jiang. Tracking cancer metastasis in vivo by using an iridium-based hypoxia-activated optical oxygen nanosensor. Angew. Chem. 127:8212–8217, 2015.CrossRefGoogle Scholar
  99. 99.
    Zheng, X., X. Wang, H. Mao, W. Wu, B. Liu, and X. Jiang. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat. Commun. 2015. doi: 10.1038/ncomms6834.Google Scholar
  100. 100.
    Zheng, R., Q. Yao, G. Xie, S. Du, C. Ren, Y. Wang, and Y. Yuan. TAT-ODD-p53 enhances the radiosensitivity of hypoxic breast cancer cells by inhibiting Parkin-mediated mitophagy. Oncotarget 6:17417–17429, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zhou, S., L. Gu, J. He, H. Zhang, and M. Zhou. MDM2 regulates vascular endothelial growth factor mRNA stabilization in hypoxia. Mol. Cell. Biol. 31:4928–4937, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhu, H., and H. F. Bunn. Oxygen sensing and signaling: impact on the regulation of physiologically important genes. Respir. Physiol. 115:239–247, 1999.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Jicheng Yu
    • 1
    • 2
  • Yuqi Zhang
    • 1
    • 2
  • Xiuli Hu
    • 3
  • Grace Wright
    • 1
  • Zhen Gu
    • 1
    • 2
    • 4
    Email author
  1. 1.Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighUSA
  2. 2.Molecular Pharmaceutics Division, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.State Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  4. 4.Department of MedicineUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations