Annals of Biomedical Engineering

, Volume 44, Issue 9, pp 2661–2673 | Cite as

Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure

  • Samer S. Merchant
  • Arnold David Gomez
  • James L. Morgan
  • Edward W. Hsu


Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond.


DTI Cardiac Parametric modelling Cardiac fiber architecture prediction Cardiac DTI atlas 



The authors would like to thank Brian Watson for laboratory assistance, and Osama Abdullah and Dr. S. Joshi for their technical discussion. This work was supported by National Institutes of Health (NIH) Grants R01 HL092055 and S10 RR023017.


  1. 1.
    Abdullah, O. M., S. G. Drakos, N. A. Diakos, O. Wever-Pinzon, A. G. Kfoury, J. Stehlik, C. H. Selzman, B. B. Reid, K. Brunisholz, D. R. Verma, C. Myrick, F. B. Sachse, D. Y. Li, and E. W. Hsu. Characterization of diffuse fibrosis in the failing human heart via diffusion tensor imaging and quantitative histological validation. NMR Biomed. 27(11):1378–1386, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alexander, D. C., C. Pierpaoli, P. J. Basser, and J. C. Gee. Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20(11):1131–1139, 2001.CrossRefPubMedGoogle Scholar
  3. 3.
    Arfken, G. “Prolate Spheroidal Coordinates”, in Mathematical Methods for Physicists (2nd ed.). Orlando: Academic Press, pp. 103–107, 1970.Google Scholar
  4. 4.
    Arts, T., P. Bovendeerd, T. Delhaas, and F. Prinzen. Modeling the relation between cardiac pump function and myofiber mechanics. J. Biomech. 36(5):731–736, 2003.CrossRefPubMedGoogle Scholar
  5. 5.
    Basser, P. J., J. Mattiello, and D. LeBihan. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1):259–267, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bayer, J. D., R. C. Blake, G. Plank, and N. A. Trayanova. A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40(10):2243–2254, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Borgdorff, M. A. J., B. Bartelds, M. G. Dickinson, P. Steendijk, M. de Vroomen, and R. M. F. Berger. Distinct loading conditions reveal various patterns of right ventricular adaptation. Am. J. Physiol. Heart Circ. Physiol. 305(3):H354–H364, 2013.CrossRefPubMedGoogle Scholar
  8. 8.
    Bovendeerd, P. H., T. Arts, J. M. Huyghe, D. H. van Campen, and R. S. Reneman. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study. J. Biomech. 25(10):1129–1140, 1992.CrossRefPubMedGoogle Scholar
  9. 9.
    Brook, R. J., and G. C. Arnold. Applied Regression Analysis and Experimental Design. New York: Marcel Dekke, 1985.Google Scholar
  10. 10.
    Chen, J., S.-K. Song, W. Liu, M. McLean, J. S. Allen, J. Tan, S. A. Wickline, and X. Yu. Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. Am. J. Physiol. Heart Circ. Physiol. 285(3):946–954, 2003.CrossRefGoogle Scholar
  11. 11.
    Donoho, D. L. Compressed sensing. IEEE Trans. Inf. Theory 52(4):1289–1306, 2006.CrossRefGoogle Scholar
  12. 12.
    Feinberg, D. A., and K. Setsompop. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J. Magn. Reson. 229:90–100, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gaynor, S. L., H. S. Maniar, J. B. Bloch, P. Steendijk, and M. R. Moon. Right atrial and ventricular adaptation to chronic right ventricular pressure overload. Circulation 112(9 Suppl):I212–I218, 2005.PubMedGoogle Scholar
  14. 14.
    Geerts, L., P. Bovendeerd, K. Nicolay, and T. Arts. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am. J. Physiol. Heart Circ. Physiol. 283(1):H139–H145, 2002.CrossRefPubMedGoogle Scholar
  15. 15.
    Giannakidis, A., D. Rohmer, A. I. Veress, and G. T. Gulberg. Diffusion. Diffusion tensor magnetic resonance imaging-derived myocardial fiber disarray in hypertensive left ventricular hypertrophy: visualization, quantification and the effect on mechanical function to cite this version, 2012.Google Scholar
  16. 16.
    Golub, G. H., and C. Reinsch. Singular value decomposition and least squares solutions. Numer. Math. 14(5):403–420, 1970.CrossRefGoogle Scholar
  17. 17.
    Healy, L. J., Y. Jiang, and E. W. Hsu. Quantitative comparison of myocardial fiber structure between mice, rabbit, and sheep using diffusion tensor cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13(1):74, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Helm, P. A., L. Younes, M. F. Beg, D. B. Ennis, C. Leclercq, O. P. Faris, E. McVeigh, D. Kass, M. I. Miller, and R. L. Winslow. Evidence of structural remodeling in the dyssynchronous failing heart. Circ. Res. 98(1):125–132, 2006.CrossRefPubMedGoogle Scholar
  19. 19.
    Holmes, A., D. F. Scollan, and R. L. Winslow. Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn. Reson. Med. 44(1):157–161, 2000.CrossRefPubMedGoogle Scholar
  20. 20.
    Hsu, E. W., and S. Mori. Analytical expressions for the NMR apparent diffusion coefficients in an anisotropic system and a simplified method for determining fiber orientation. Magn. Reson. Med. 34(2):194–200, 1995.CrossRefPubMedGoogle Scholar
  21. 21.
    Hsu, E. W., A. L. Muzikant, S. A. Matulevicius, R. C. Penland, and C. S. Henriquez. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am. J. Physiol. Heart Circ. Physiol. 274(5 Pt 2):H1627–H1634, 1998.Google Scholar
  22. 22.
    Jiang, Y., K. Pandya, O. Smithies, and E. W. Hsu. Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn. Reson. Med. 52(3):453–460, 2004.CrossRefPubMedGoogle Scholar
  23. 23.
    Kanai, A., and G. Salama. Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in guinea pig hearts. Circ. Res. 77(4):784–802, 1995.CrossRefPubMedGoogle Scholar
  24. 24.
    Koay, C. G., L.-C. Chang, J. D. Carew, C. Pierpaoli, and P. J. Basser. A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. J. Magn. Reson. 182(1):115–125, 2006.CrossRefPubMedGoogle Scholar
  25. 25.
    Kung, G. L., O. M. Ajijola, R. Tung, M. Vaseghi, J. K. Gahm, W. Zhou, A. Mahajan, A. Garfinkel, K. Shivkumar, and D. B. Ennis. Microstructural remodeling in the porcine infarct border zone measured by diffusion tensor and late gadolinium enhancement MRI. Circulation 126(21 Supplement):A14246, 2012.Google Scholar
  26. 26.
    Larkman, D. J., J. V. Hajnal, A. H. Herlihy, G. A. Coutts, I. R. Young, and G. Ehnholm. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J. Magn. Reson. Imaging 13(2):313–317, 2001.CrossRefPubMedGoogle Scholar
  27. 27.
    Lombaert, H., J.-M. Peyrat, P. Croisille, S. Rapacchi, L. Fanton, F. Cheriet, P. Clarysse, I. Magnin, H. Delingette, and N. Ayache. Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Trans. Med. Imaging 31(7):1436–1447, 2012.CrossRefPubMedGoogle Scholar
  28. 28.
    Lustig, M., D. Donoho, and J. M. Pauly. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6):1182–1195, 2007.CrossRefPubMedGoogle Scholar
  29. 29.
    Mori, S., K. Oishi, and A. V. Faria. White matter atlases based on diffusion tensor imaging. Curr. Opin. Neurol. 22(4):362–369, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Peyrat, J.-M., M. Sermesant, X. Pennec, H. Delingette, C. Xu, E. McVeigh, and N. Ayache. Towards a statistical atlas of cardiac fiber structure. Med. Image Comput. Comput. Assist. Interv. 9(Pt 1):297–304, 2006.PubMedGoogle Scholar
  31. 31.
    Piuze, E., H. Lombaert, J. Sporring, G. J. Strijkers, A. J. Bakermans, and K. Siddiqi. Atlases of cardiac fiber differential geometry. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS, vol. 7945, pp. 442–449, 2013.Google Scholar
  32. 32.
    Reese, T. G., R. M. Weisskoff, R. N. Smith, B. R. Rosen, R. E. Dinsmore, and V. J. Wedeen. Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn. Reson. Med. 34(6):786–791, 1995.CrossRefPubMedGoogle Scholar
  33. 33.
    Ripplinger, C. M., W. Li, J. Hadley, J. Chen, F. Rothenberg, R. Lombardi, S. A. Wickline, A. J. Marian, and I. R. Efimov. Enhanced transmural fiber rotation and connexin 43 heterogeneity are associated with an increased upper limit of vulnerability in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ. Res. 101(10):1049–1057, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rohmer, D., A. Sitek, and G. T. Gullberg. Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging. Investig. Radiol. 42(11):777–789, 2007.CrossRefGoogle Scholar
  35. 35.
    Schmitt, B., K. Fedarava, J. Falkenberg, K. Rothaus, N. K. Bodhey, C. Reischauer, S. Kozerke, B. Schnackenburg, D. Westermann, P. P. Lunkenheimer, R. H. Anderson, F. Berger, and T. Kuehne. Three-dimensional alignment of the aggregated myocytes in the normal and hypertrophic murine heart. J. Appl. Physiol. 107(3):921–927, 2009.CrossRefPubMedGoogle Scholar
  36. 36.
    Scollan, D. F., A. Holmes, R. Winslow, J. Forder, S. H. Gilbert, D. Benoist, A. P. Benson, E. White, S. F. Tanner, A. V. Holden, H. Dobrzynski, O. Bernus, A. Radjenovic, A. J. Physiol, H. Circ, E. K. Englund, C. P. Elder, Q. Xu, Z. Ding, B. M. Damon, R. Integr, C. Physiol, B. Schmitt, K. Fedarava, J. Falkenberg, K. Rothaus, N. K. Bodhey, S. Kozerke, B. Schnackenburg, D. Westermann, P. Paul, R. H. Anderson, F. Berger, and T. Kuehne. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol. 275:H2308–H2318, 1998.Google Scholar
  37. 37.
    Streeter, D. D., H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3):339–347, 1969.CrossRefPubMedGoogle Scholar
  38. 38.
    Toussaint, N., C. T. Stoeck, T. Schaeffter, S. Kozerke, M. Sermesant, and P. G. Batchelor. In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing. Med. Image Anal. 17(8):1243–1255, 2013.CrossRefPubMedGoogle Scholar
  39. 39.
    Vercauteren, T., X. Pennec, A. Perchant, and N. Ayache. Symmetric log-domain diffeomorphic registration: a demons-based approach. Med. Image Comput. Comput. Assist. Interv. 11(Pt 1):754–761, 2008.PubMedGoogle Scholar
  40. 40.
    Welsh, C. L., E. V. R. Dibella, G. Adluru, and E. W. Hsu. Model-based reconstruction of undersampled diffusion tensor k-space data. Magn. Reson. Med. 70(2):429–440, 2013.CrossRefPubMedGoogle Scholar
  41. 41.
    Wu, M. T., M. Y. Su, Y. L. Huang, K. R. Chiou, P. Yang, H. B. Pan, T. G. Reese, V. J. Wedeen, and W. I. Tseng. Sequential changes of myocardial microstructure in patients postmyocardial infarction by diffusion-tensor cardiac MR: correlation with left ventricular structure and function. Circ. Cardiovasc. Imaging 2(1):32–40, 2009.CrossRefPubMedGoogle Scholar
  42. 42.
    Wu, E. X., Y. Wu, J. M. Nicholls, J. Wang, S. Liao, S. Zhu, C.-P. P. Lau, and H.-F. F. Tse. MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magn. Reson. Med. 58(4):687–695, 2007.CrossRefPubMedGoogle Scholar
  43. 43.
    Wu, D., J. Xu, M. T. McMahon, P. C. M. van Zijl, S. Mori, F. J. Northington, and J. Zhang. In vivo high-resolution diffusion tensor imaging of the mouse brain. Neuroimage 83:18–26, 2013.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang, L., J. Allen, L. Hu, S. D. Caruthers, S. A. Wickline, and J. Chen. Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI.”. Am. J. Physiol. Heart Circ. Physiol. 304(2):H246–H252, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Division of Cardiothoracic SurgeryUniversity of UtahSalt Lake CityUSA

Personalised recommendations