# Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure

## Abstract

Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond.

## Keywords

DTI Cardiac Parametric modelling Cardiac fiber architecture prediction Cardiac DTI atlas## Notes

### Acknowledgements

The authors would like to thank Brian Watson for laboratory assistance, and Osama Abdullah and Dr. S. Joshi for their technical discussion. This work was supported by National Institutes of Health (NIH) Grants R01 HL092055 and S10 RR023017.

## References

- 1.Abdullah, O. M., S. G. Drakos, N. A. Diakos, O. Wever-Pinzon, A. G. Kfoury, J. Stehlik, C. H. Selzman, B. B. Reid, K. Brunisholz, D. R. Verma, C. Myrick, F. B. Sachse, D. Y. Li, and E. W. Hsu. Characterization of diffuse fibrosis in the failing human heart via diffusion tensor imaging and quantitative histological validation.
*NMR Biomed.*27(11):1378–1386, 2014.CrossRefPubMedPubMedCentralGoogle Scholar - 2.Alexander, D. C., C. Pierpaoli, P. J. Basser, and J. C. Gee. Spatial transformations of diffusion tensor magnetic resonance images.
*IEEE Trans. Med. Imaging*20(11):1131–1139, 2001.CrossRefPubMedGoogle Scholar - 3.Arfken, G. “Prolate Spheroidal Coordinates”, in Mathematical Methods for Physicists (2nd ed.). Orlando: Academic Press, pp. 103–107, 1970.Google Scholar
- 4.Arts, T., P. Bovendeerd, T. Delhaas, and F. Prinzen. Modeling the relation between cardiac pump function and myofiber mechanics.
*J. Biomech.*36(5):731–736, 2003.CrossRefPubMedGoogle Scholar - 5.Basser, P. J., J. Mattiello, and D. LeBihan. MR diffusion tensor spectroscopy and imaging.
*Biophys. J.*66(1):259–267, 1994.CrossRefPubMedPubMedCentralGoogle Scholar - 6.Bayer, J. D., R. C. Blake, G. Plank, and N. A. Trayanova. A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models.
*Ann. Biomed. Eng.*40(10):2243–2254, 2012.CrossRefPubMedPubMedCentralGoogle Scholar - 7.Borgdorff, M. A. J., B. Bartelds, M. G. Dickinson, P. Steendijk, M. de Vroomen, and R. M. F. Berger. Distinct loading conditions reveal various patterns of right ventricular adaptation.
*Am. J. Physiol. Heart Circ. Physiol.*305(3):H354–H364, 2013.CrossRefPubMedGoogle Scholar - 8.Bovendeerd, P. H., T. Arts, J. M. Huyghe, D. H. van Campen, and R. S. Reneman. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study.
*J. Biomech.*25(10):1129–1140, 1992.CrossRefPubMedGoogle Scholar - 9.Brook, R. J., and G. C. Arnold. Applied Regression Analysis and Experimental Design. New York: Marcel Dekke, 1985.Google Scholar
- 10.Chen, J., S.-K. Song, W. Liu, M. McLean, J. S. Allen, J. Tan, S. A. Wickline, and X. Yu. Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI.
*Am. J. Physiol. Heart Circ. Physiol.*285(3):946–954, 2003.CrossRefGoogle Scholar - 11.Donoho, D. L. Compressed sensing.
*IEEE Trans. Inf. Theory*52(4):1289–1306, 2006.CrossRefGoogle Scholar - 12.Feinberg, D. A., and K. Setsompop. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging.
*J. Magn. Reson.*229:90–100, 2013.CrossRefPubMedPubMedCentralGoogle Scholar - 13.Gaynor, S. L., H. S. Maniar, J. B. Bloch, P. Steendijk, and M. R. Moon. Right atrial and ventricular adaptation to chronic right ventricular pressure overload.
*Circulation*112(9 Suppl):I212–I218, 2005.PubMedGoogle Scholar - 14.Geerts, L., P. Bovendeerd, K. Nicolay, and T. Arts. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging.
*Am. J. Physiol. Heart Circ. Physiol.*283(1):H139–H145, 2002.CrossRefPubMedGoogle Scholar - 15.Giannakidis, A., D. Rohmer, A. I. Veress, and G. T. Gulberg. Diffusion. Diffusion tensor magnetic resonance imaging-derived myocardial fiber disarray in hypertensive left ventricular hypertrophy: visualization, quantification and the effect on mechanical function to cite this version, 2012.Google Scholar
- 16.Golub, G. H., and C. Reinsch. Singular value decomposition and least squares solutions.
*Numer. Math.*14(5):403–420, 1970.CrossRefGoogle Scholar - 17.Healy, L. J., Y. Jiang, and E. W. Hsu. Quantitative comparison of myocardial fiber structure between mice, rabbit, and sheep using diffusion tensor cardiovascular magnetic resonance.
*J. Cardiovasc. Magn. Reson.*13(1):74, 2011.CrossRefPubMedPubMedCentralGoogle Scholar - 18.Helm, P. A., L. Younes, M. F. Beg, D. B. Ennis, C. Leclercq, O. P. Faris, E. McVeigh, D. Kass, M. I. Miller, and R. L. Winslow. Evidence of structural remodeling in the dyssynchronous failing heart.
*Circ. Res.*98(1):125–132, 2006.CrossRefPubMedGoogle Scholar - 19.Holmes, A., D. F. Scollan, and R. L. Winslow. Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium.
*Magn. Reson. Med.*44(1):157–161, 2000.CrossRefPubMedGoogle Scholar - 20.Hsu, E. W., and S. Mori. Analytical expressions for the NMR apparent diffusion coefficients in an anisotropic system and a simplified method for determining fiber orientation.
*Magn. Reson. Med.*34(2):194–200, 1995.CrossRefPubMedGoogle Scholar - 21.Hsu, E. W., A. L. Muzikant, S. A. Matulevicius, R. C. Penland, and C. S. Henriquez. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation.
*Am. J. Physiol. Heart Circ. Physiol.*274(5 Pt 2):H1627–H1634, 1998.Google Scholar - 22.Jiang, Y., K. Pandya, O. Smithies, and E. W. Hsu. Three-dimensional diffusion tensor microscopy of fixed mouse hearts.
*Magn. Reson. Med.*52(3):453–460, 2004.CrossRefPubMedGoogle Scholar - 23.Kanai, A., and G. Salama. Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in guinea pig hearts.
*Circ. Res.*77(4):784–802, 1995.CrossRefPubMedGoogle Scholar - 24.Koay, C. G., L.-C. Chang, J. D. Carew, C. Pierpaoli, and P. J. Basser. A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging.
*J. Magn. Reson.*182(1):115–125, 2006.CrossRefPubMedGoogle Scholar - 25.Kung, G. L., O. M. Ajijola, R. Tung, M. Vaseghi, J. K. Gahm, W. Zhou, A. Mahajan, A. Garfinkel, K. Shivkumar, and D. B. Ennis. Microstructural remodeling in the porcine infarct border zone measured by diffusion tensor and late gadolinium enhancement MRI.
*Circulation*126(21 Supplement):A14246, 2012.Google Scholar - 26.Larkman, D. J., J. V. Hajnal, A. H. Herlihy, G. A. Coutts, I. R. Young, and G. Ehnholm. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited.
*J. Magn. Reson. Imaging*13(2):313–317, 2001.CrossRefPubMedGoogle Scholar - 27.Lombaert, H., J.-M. Peyrat, P. Croisille, S. Rapacchi, L. Fanton, F. Cheriet, P. Clarysse, I. Magnin, H. Delingette, and N. Ayache. Human atlas of the cardiac fiber architecture: study on a healthy population.
*IEEE Trans. Med. Imaging*31(7):1436–1447, 2012.CrossRefPubMedGoogle Scholar - 28.Lustig, M., D. Donoho, and J. M. Pauly. Sparse MRI: the application of compressed sensing for rapid MR imaging.
*Magn. Reson. Med.*58(6):1182–1195, 2007.CrossRefPubMedGoogle Scholar - 29.Mori, S., K. Oishi, and A. V. Faria. White matter atlases based on diffusion tensor imaging.
*Curr. Opin. Neurol.*22(4):362–369, 2009.CrossRefPubMedPubMedCentralGoogle Scholar - 30.Peyrat, J.-M., M. Sermesant, X. Pennec, H. Delingette, C. Xu, E. McVeigh, and N. Ayache. Towards a statistical atlas of cardiac fiber structure.
*Med. Image Comput. Comput. Assist. Interv.*9(Pt 1):297–304, 2006.PubMedGoogle Scholar - 31.Piuze, E., H. Lombaert, J. Sporring, G. J. Strijkers, A. J. Bakermans, and K. Siddiqi. Atlases of cardiac fiber differential geometry.
*Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, LNCS, vol. 7945, pp. 442–449, 2013.Google Scholar - 32.Reese, T. G., R. M. Weisskoff, R. N. Smith, B. R. Rosen, R. E. Dinsmore, and V. J. Wedeen. Imaging myocardial fiber architecture in vivo with magnetic resonance.
*Magn. Reson. Med.*34(6):786–791, 1995.CrossRefPubMedGoogle Scholar - 33.Ripplinger, C. M., W. Li, J. Hadley, J. Chen, F. Rothenberg, R. Lombardi, S. A. Wickline, A. J. Marian, and I. R. Efimov. Enhanced transmural fiber rotation and connexin 43 heterogeneity are associated with an increased upper limit of vulnerability in a transgenic rabbit model of human hypertrophic cardiomyopathy.
*Circ. Res.*101(10):1049–1057, 2007.CrossRefPubMedPubMedCentralGoogle Scholar - 34.Rohmer, D., A. Sitek, and G. T. Gullberg. Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging.
*Investig. Radiol.*42(11):777–789, 2007.CrossRefGoogle Scholar - 35.Schmitt, B., K. Fedarava, J. Falkenberg, K. Rothaus, N. K. Bodhey, C. Reischauer, S. Kozerke, B. Schnackenburg, D. Westermann, P. P. Lunkenheimer, R. H. Anderson, F. Berger, and T. Kuehne. Three-dimensional alignment of the aggregated myocytes in the normal and hypertrophic murine heart.
*J. Appl. Physiol.*107(3):921–927, 2009.CrossRefPubMedGoogle Scholar - 36.Scollan, D. F., A. Holmes, R. Winslow, J. Forder, S. H. Gilbert, D. Benoist, A. P. Benson, E. White, S. F. Tanner, A. V. Holden, H. Dobrzynski, O. Bernus, A. Radjenovic, A. J. Physiol, H. Circ, E. K. Englund, C. P. Elder, Q. Xu, Z. Ding, B. M. Damon, R. Integr, C. Physiol, B. Schmitt, K. Fedarava, J. Falkenberg, K. Rothaus, N. K. Bodhey, S. Kozerke, B. Schnackenburg, D. Westermann, P. Paul, R. H. Anderson, F. Berger, and T. Kuehne. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging.
*Am. J. Physiol. Heart Circ. Physiol.*275:H2308–H2318, 1998.Google Scholar - 37.Streeter, D. D., H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick. Fiber orientation in the canine left ventricle during diastole and systole.
*Circ. Res.*24(3):339–347, 1969.CrossRefPubMedGoogle Scholar - 38.Toussaint, N., C. T. Stoeck, T. Schaeffter, S. Kozerke, M. Sermesant, and P. G. Batchelor. In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing.
*Med. Image Anal.*17(8):1243–1255, 2013.CrossRefPubMedGoogle Scholar - 39.Vercauteren, T., X. Pennec, A. Perchant, and N. Ayache. Symmetric log-domain diffeomorphic registration: a demons-based approach.
*Med. Image Comput. Comput. Assist. Interv.*11(Pt 1):754–761, 2008.PubMedGoogle Scholar - 40.Welsh, C. L., E. V. R. Dibella, G. Adluru, and E. W. Hsu. Model-based reconstruction of undersampled diffusion tensor k-space data.
*Magn. Reson. Med.*70(2):429–440, 2013.CrossRefPubMedGoogle Scholar - 41.Wu, M. T., M. Y. Su, Y. L. Huang, K. R. Chiou, P. Yang, H. B. Pan, T. G. Reese, V. J. Wedeen, and W. I. Tseng. Sequential changes of myocardial microstructure in patients postmyocardial infarction by diffusion-tensor cardiac MR: correlation with left ventricular structure and function.
*Circ. Cardiovasc. Imaging*2(1):32–40, 2009.CrossRefPubMedGoogle Scholar - 42.Wu, E. X., Y. Wu, J. M. Nicholls, J. Wang, S. Liao, S. Zhu, C.-P. P. Lau, and H.-F. F. Tse. MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model.
*Magn. Reson. Med.*58(4):687–695, 2007.CrossRefPubMedGoogle Scholar - 43.Wu, D., J. Xu, M. T. McMahon, P. C. M. van Zijl, S. Mori, F. J. Northington, and J. Zhang. In vivo high-resolution diffusion tensor imaging of the mouse brain.
*Neuroimage*83:18–26, 2013.CrossRefPubMedGoogle Scholar - 44.Zhang, L., J. Allen, L. Hu, S. D. Caruthers, S. A. Wickline, and J. Chen. Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI.”.
*Am. J. Physiol. Heart Circ. Physiol.*304(2):H246–H252, 2013.CrossRefGoogle Scholar