Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 9, pp 2737–2745 | Cite as

Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro

  • Weitao Li
  • Dong Huang
  • Yan Zhang
  • Yangyang Liu
  • Yueqing Gu
  • Zhiyu QianEmail author
Article

Abstract

Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

Keywords

Near infrared spectrum Nanoparticles Fluorescence imaging Therapy assessment 

Notes

Acknowledgments

This work is supported by “the Fundamental Research Funds for the Central Universities”, NO. NS2015032. We thanked Dr. Xinzeng Wang for close reading of the manuscript and made corresponding revisions in the whole paper.

References

  1. 1.
    Bown, S. G. Photodynamic therapy for cancers of solid organs. Lasers Electro Opt. Soc. 1:253–254, 2002.Google Scholar
  2. 2.
    Celli, J. P., B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110:2795–2838, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chen, T. C., L. Huang, C. C. Liu, P. J. Chao, and F. H. Lin. Luminol as the light source for in situ photodynamic therapy. Process Biochem. 47:1903–1908, 2012.CrossRefGoogle Scholar
  4. 4.
    Crimaldi, J. P. Planar laser induced fluorescence in aqueous flows. Exp. Fluids. 44:851–863, 2008.CrossRefGoogle Scholar
  5. 5.
    Cui, S., H. Chen, H. Zhu, J. Tian, X. chi, Z. Qian, S. Achilefu, and Y. Gu. Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light. J. Mater. Chem. 22:4861–4873, 2012.CrossRefGoogle Scholar
  6. 6.
    Cui, S., D. Yin, Y. Chen, Y. Di, H. Chen, Y. Ma, S. Achilefu, and Y. Gu. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano. 7:676–688, 2013.CrossRefPubMedGoogle Scholar
  7. 7.
    Garcez, A. S., E. R. Freqnani, H. M. Rodriquez, S. C. Nunez, C. P. Sabino, H. Suzuki, and M. S. Ribeiro. The use of optical fiber in endodontic photodynamic therapy. Is it really relevant? Lasers Med. Sci. 28:79–85, 2013.CrossRefPubMedGoogle Scholar
  8. 8.
    Gehmert, S., S. Geis, P. E. Lamby, C. Roll, U. Braumandl, M. Hidayat, M. Sultan, B. Fuchtmeier, E. M. Jung, and L. Prantl. Evaluation of hyperbaric oxygen therapy for free flaps using planar optical oxygen sensors. Preliminary results. Clin. Hemorheol. Microcirc. 48:75–79, 2011.PubMedGoogle Scholar
  9. 9.
    Hackbarth, S., J. Schlothauer, A. Preuss, and B. Roder. New insights to primary photodynamic effects-singlet oxygen kinetics in living cells. J. Photochem. Photobiol. B 98:173–179, 2010.CrossRefPubMedGoogle Scholar
  10. 10.
    Hewett, J., V. Nadeau, J. Ferquson, H. Moseley, S. Ibbotson, J. W. Allen, W. Sibbett, and M. Padgett. The application of a compact multispectral imaging system with integrated excitation source to in vivo monitoring of fluorescence during topical photodynamic therapy of superficial skin cancers. Photochem. Photobiol. 73:278–282, 2001.CrossRefPubMedGoogle Scholar
  11. 11.
    Jerjes, W., T. Upile, C. Alexander Mosse, Z. Hamdoon, M. Morcos, S. Morley, and C. Hopper. Prospective evaluation of 110 patients following ultrasound-guided photodynamic therapy for deep seated pathologies. Photodiagnosis Photodyn Ther. 8:297–306, 2011.CrossRefPubMedGoogle Scholar
  12. 12.
    Jessica, T., C. Sandra, and C. Alison. Validation of a non-invasive fluorescence imaging system to monitor dermatological PDT. Photodiagnosis Photodyn. Ther. 7:86–97, 2010.CrossRefGoogle Scholar
  13. 13.
    Jonas, R., T. Schaal, M. Krimmel, D. Gülicher, S. Reinert, and J. Hoffmann. Monitoring in microvascular tissue transfer by measurement of oxygen partial pressure: four years experience with 125 microsurgical transplants. J. Craniomaxillofac Surg. 41:303–309, 2013.CrossRefPubMedGoogle Scholar
  14. 14.
    Jung, J., A. J. Nichols, O. J. Klein, E. Roussakis, and C. L. Evans. Label-free, longitudinal visualization of PDT response in vitro with optical coherence tomography. Isr. J. Chem. 52:728–744, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kaščáková, S., A. Giuliani, S. Lacerda, A. Pallier, P. Mercere, E. Toth, and M. Refregiers. X-ray induced radiophotodynamic therapy (RPDT) using lanthanide micelles: beyond depth limitations. Nano Res. 8:2373–2379, 2015.CrossRefGoogle Scholar
  16. 16.
    Niedre, M. J., A. J. Secord, M. S. Patterson, and B. C. Wilson. In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy. Cancer Res. 63:7086–7094, 2003.Google Scholar
  17. 17.
    Pacheco, L., S. S. Stolik, J. De la Rosa, and A. De la Cadena. Laser diode system for interstitial photodynamic therapy. IEEE Lat. Am. Trans. 12:574–579, 2014.CrossRefGoogle Scholar
  18. 18.
    Papkovsky, D. B., and R. I. Dmitriev. Biological detection by optical oxygen sensing. Chem. Soc. Rev. 42:8700–8732, 2013.CrossRefPubMedGoogle Scholar
  19. 19.
    Piffaretti, F., A. M. Novello, R. S. Kumar, E. Forte, C. Paulou, P. Nowak-Sliwinska, H. van den Bergh, and G. Wagnières. Real-time, in vivo measurement of tissular pO2 through the delayed fluorescence of endogenous protoporphyrin IX during photodynamic therapy. J. Biomed. Opt. 17:115007, 2012.CrossRefPubMedGoogle Scholar
  20. 20.
    Sabino, C. P., A. S. Garcez, S. C. Núñez, M. S. Ribeiro, and M. R. Hamblin. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals. Lasers Med. Sci. 30:1657–1665, 2015.CrossRefPubMedGoogle Scholar
  21. 21.
    Sargent, B. J., and D. A. Gough. Design and validation of the transparent oxygen sensor array. IEEE Trans. Biomed. Eng. 38:476–482, 1991.CrossRefPubMedGoogle Scholar
  22. 22.
    Sunar, U. Monitoring photodynamic therapy of head and neck malignancies with optical spectroscopies. World J. Clin. Cases. 1:96–105, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tokatli-Apollon, A., H. Lee, M. El-Rifai, and A. Punjabi. Upconversion nanoparticles for photodynamic therapy. Northeast Bioeng. Conf. 40:1–2, 2014.Google Scholar
  24. 24.
    Trushina, A. P., V. G. Goldort, S. A. Kochubei, and A. V. Baklanov. UV-photoexcitation of encounter complexes of oxygen O2–O2 as a source of singlet oxygen O2(1Δg) in gas phase. Chem. Phys. Lett. 485:11–15, 2010.CrossRefGoogle Scholar
  25. 25.
    Wang, J., D. Xing, Y. He, and X. Hu. Experimental study on photodynamic diagnosis of cancer mediated by chemiluminescence probe. FEBS Lett. 523:128–132, 2002.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Weitao Li
    • 1
  • Dong Huang
    • 1
  • Yan Zhang
    • 1
  • Yangyang Liu
    • 1
  • Yueqing Gu
    • 2
  • Zhiyu Qian
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Department of Biomedical EngineeringChina Pharmaceutical UniversityNanjingChina

Personalised recommendations