Annals of Biomedical Engineering

, Volume 44, Issue 8, pp 2505–2517 | Cite as

Biomechanical Role of Bone Anisotropy Estimated on Clinical CT Scans by Image Registration

  • Elham Taghizadeh
  • Mauricio Reyes
  • Philippe Zysset
  • Adeliya Latypova
  • Alexandre Terrier
  • Philippe Büchler
Article

Abstract

Image-based modeling is a popular approach to perform patient-specific biomechanical simulations. Accurate modeling is critical for orthopedic application to evaluate implant design and surgical planning. It has been shown that bone strength can be estimated from the bone mineral density (BMD) and trabecular bone architecture. However, these findings cannot be directly and fully transferred to patient-specific modeling since only BMD can be derived from clinical CT. Therefore, the objective of this study was to propose a method to predict the trabecular bone structure using a µCT atlas and an image registration technique. The approach has been evaluated on femurs and patellae under physiological loading. The displacement and ultimate force for femurs loaded in stance position were predicted with an error of 2.5% and 3.7%, respectively, while predictions obtained with an isotropic material resulted in errors of 7.3% and 6.9%. Similar results were obtained for the patella, where the strain predicted using the registration approach resulted in an improved mean squared error compared to the isotropic model. We conclude that the registration of anisotropic information from of a single template bone enables more accurate patient-specific simulations from clinical image datasets than isotropic model.

Keywords

Trabecular bone Femur Patella Anisotropy Finite element analysis (FEA) 

Notes

Acknowledgment

The authors would like to thank Dr. Enrico Dall’Ara for preparing, scanning and sharing the femoral data, Dr. Jakob Schwiedrzik for providing the UMAT implementation of the mechanical model, Prof. Dieter Pahr for giving us access to the Medtool software and Dr. Ghislain Maquer and Dr. Hadi Seyed Hosseini for their assistance on the preparation of the FE models.

Funding

The authors have no commercial, proprietary, or financial interest in any products or companies described in this article.

References

  1. 1.
    Bonaretti, S., C. Seiler, C. Boichon, M. Reyes, and P. Büchler. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations. Med. Eng. Phys. 36:1626–1635, 2014.CrossRefPubMedGoogle Scholar
  2. 2.
    Boutroy, S., M. L. Bouxsein, F. Munoz, and P. D. Delmas. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 90:6508–6515, 2005.CrossRefPubMedGoogle Scholar
  3. 3.
    Burghardt, A. J., T. M. Link, and S. Majumdar. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin. Orthop. Relat. Res. 469:2179–2193, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Doblaré, M., and J. M. García. Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J. Biomech. 34:1157–1170, 2001.CrossRefPubMedGoogle Scholar
  5. 5.
    Dragomir-Daescu, D., S. McEligot, Y. Dai, R. C. Entwistle, C. Salas, L. J. Melton, K. E. Bennet, S. Khosla, and S. Amin. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann. Biomed. Eng. 39:742–755, 2011.CrossRefPubMedGoogle Scholar
  6. 6.
    Enns-Bray, W. S., J. S. Owoc, K. K. Nishiyama, and S. K. Boyd. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis. J. Biomech. 47:3272–3278, 2014.CrossRefPubMedGoogle Scholar
  7. 7.
    Harrigan, T. P., and R. W. Mann. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19:761–767, 1984.CrossRefGoogle Scholar
  8. 8.
    Hazrati Marangalou, J., K. Ito, M. Cataldi, F. Taddei, and B. van Rietbergen. A novel approach to estimate trabecular bone anisotropy using a database approach. J. Biomech. 46:2356–2362, 2013.CrossRefPubMedGoogle Scholar
  9. 9.
    Hazrati Marangalou, J., K. Ito, and B. van Rietbergen. A novel approach to estimate trabecular bone anisotropy from stress tensors. Biomech. Model. Mechanobiol. 2014. doi:10.1007/s10237-014-0584-6.PubMedGoogle Scholar
  10. 10.
    Hellmich, C., C. Kober, and B. Erdmann. Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann. Biomed. Eng. 36:108–122, 2008.CrossRefPubMedGoogle Scholar
  11. 11.
    Hellmich, C., F.-J. Ulm, and L. Dormieux. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach. Biomech. Model. Mechanobiol. 2:219–238, 2004.CrossRefPubMedGoogle Scholar
  12. 12.
    Horn, B. K. P. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4:629, 1987.CrossRefGoogle Scholar
  13. 13.
    Ino, F., Y. Kawasaki, T. Tashiro, Y. Nakajima, Y. Sato, S. Tamura, and K. Hagihara. A parallel implementation of 2D/3D image registration for computer-assisted surgery. Int. J. Bioinform. Res. Appl. 2:341–358, 2006.CrossRefPubMedGoogle Scholar
  14. 14.
    Kersh, M. E., P. K. Zysset, D. H. Pahr, U. Wolfram, D. Larsson, and M. G. Pandy. Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J. Biomech. 46:2659–2666, 2013.CrossRefPubMedGoogle Scholar
  15. 15.
    Klein, S., M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29:196–205, 2010.CrossRefPubMedGoogle Scholar
  16. 16.
    Kober, C., B. Erdmann, C. Hellmich, R. Sader, and H.-F. Zeilhofer. Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible. Comput. Methods Biomech. Biomed. Eng. 9:91–101, 2006.CrossRefGoogle Scholar
  17. 17.
    Larsson, D., B. Luisier, M. E. Kersh, E. Dall’ara, P. K. Zysset, M. G. Pandy, and D. H. Pahr. Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor. Ann. Biomed. Eng. 42:950–959, 2014.CrossRefPubMedGoogle Scholar
  18. 18.
    Latypova, A., F. Levrero, D. Pioletti, B. Jolles, and A. Terrier. A musculoskeletal numerical knee model to assess patellar resurfacing in total knee arthroplasty. 2013. At <http://www.ors.org/Transactions/59/PS2–099/1709.html>.
  19. 19.
    Le Minh, H., W. M. Park, K. Kim, S.-W. Son, S.-H. Lee, and Y. H. Kim. A new patient-specific planning method based on joint contact force balance with soft tissue release in total knee arthroplasty. Int. J. Precis. Eng. Manuf. 14:2193–2199, 2013.CrossRefGoogle Scholar
  20. 20.
    Lekadir, K., J. Hazrati-Marangalou, C. Hoogendoorn, Z. Taylor, B. van Rietbergen, and A. F. Frangi. Statistical estimation of femur micro-architecture using optimal shape and density predictors. J. Biomech. 48:598–603, 2015.CrossRefPubMedGoogle Scholar
  21. 21.
    Luisier, B., E. Dall’Ara, and D. H. Pahr. Orthotropic HR-pQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs. J. Mech. Behav. Biomed. Mater. 32:287–299, 2014.CrossRefPubMedGoogle Scholar
  22. 22.
    Maquer, G., S. N. Musy, J. Wandel, T. Gross, and P. K. Zysset. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. J. Bone Miner. Res. 30:1000–1008, 2015.CrossRefPubMedGoogle Scholar
  23. 23.
    Muller, R., T. Hildebrand, and P. Ruegsegger. Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys. Med. Biol. 39:145–164, 1994.CrossRefPubMedGoogle Scholar
  24. 24.
    Ourselin, S., A. Roche, S. Prima, and N. Ayache. Block Matching: A General Framework to Improve Robustness of Rigid Registration of Medical Images. In: Medical image computing and computer-assisted interventio—MICCAI 2000 SE-57, edited by S. Delp, A. DiGoia, and B. Jaramaz. Berlin Heidelberg: Springer, 2000, pp. 557–566.CrossRefGoogle Scholar
  25. 25.
    Pahr, D. H., and P. K. Zysset. From high-resolution CT data to finite element models: development of an integrated modular framework. Comput. Methods Biomech. Biomed. Eng. 12:45–57, 2009.CrossRefGoogle Scholar
  26. 26.
    Rueckert, D., L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18:712–721, 1999.CrossRefPubMedGoogle Scholar
  27. 27.
    San Antonio, T., M. Ciaccia, C. Müller-Karger, and E. Casanova. Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions. Med. Eng. Phys. 34:914–919, 2012.CrossRefPubMedGoogle Scholar
  28. 28.
    Schwiedrzik, J. J., and P. K. Zysset. An anisotropic elastic–viscoplastic damage model for bone tissue. Biomech. Model. Mechanobiol. 12:201–213, 2013.CrossRefPubMedGoogle Scholar
  29. 29.
    Seiler, C., X. Pennec, and M. Reyes. Capturing the multiscale anatomical shape variability with polyaffine transformation trees. Med. Image Anal. 16:1371–1384, 2012.CrossRefPubMedGoogle Scholar
  30. 30.
    Tabor, Z., and E. Rokita. Quantifying anisotropy of trabecular bone from gray-level images. Bone 40:966–972, 2007.CrossRefPubMedGoogle Scholar
  31. 31.
    Takahashi, A., H. Sano, M. Ohnuma, M. Kashiwaba, D. Chiba, M. Kamimura, T. Sugita, and E. Itoi. Patellar morphology and femoral component geometry influence patellofemoral contact stress in total knee arthroplasty without patellar resurfacing. Knee Surg. Sports Traumatol. Arthrosc. 20:1787–1795, 2012.CrossRefPubMedGoogle Scholar
  32. 32.
    The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 2015. At <http://doc.cgal.org/4.6/Manual/packages.html>.
  33. 33.
    Trabelsi, N., and Z. Yosibash. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments. J. Biomech. Eng. 133:061001, 2011.CrossRefPubMedGoogle Scholar
  34. 34.
    Wolfram, U., B. Schmitz, F. Heuer, M. Reinehr, and H.-J. Wilke. Vertebral trabecular main direction can be determined from clinical CT datasets using the gradient structure tensor and not the inertia tensor—a case study. J. Biomech. 42:1390–1396, 2009.CrossRefPubMedGoogle Scholar
  35. 35.
    Zysset, P. K., and A. Curnier. An alternative model for anisotropic elasticity based on fabric tensors. Mech. Mater. 21:243–250, 1995.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Elham Taghizadeh
    • 1
  • Mauricio Reyes
    • 1
  • Philippe Zysset
    • 1
  • Adeliya Latypova
    • 2
  • Alexandre Terrier
    • 2
  • Philippe Büchler
    • 1
  1. 1.Institute for Surgical Technology & BiomechanicsUniversity of BernBernSwitzerland
  2. 2.Laboratory of Biomechanical OrthopedicsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations