Annals of Biomedical Engineering

, Volume 44, Issue 8, pp 2453–2463 | Cite as

Automatic Model Generation Framework for Computational Simulation of Cochlear Implantation

  • Nerea Mangado
  • Mario Ceresa
  • Nicolas Duchateau
  • Hans Martin Kjer
  • Sergio Vera
  • Hector Dejea Velardo
  • Pavel Mistrik
  • Rasmus R. Paulsen
  • Jens Fagertun
  • Jérôme Noailly
  • Gemma Piella
  • Miguel Ángel González Ballester


Recent developments in computational modeling of cochlear implantation are promising to study in silico the performance of the implant before surgery. However, creating a complete computational model of the patient’s anatomy while including an external device geometry remains challenging. To address such a challenge, we propose an automatic framework for the generation of patient-specific meshes for finite element modeling of the implanted cochlea. First, a statistical shape model is constructed from high-resolution anatomical μCT images. Then, by fitting the statistical model to a patient’s CT image, an accurate model of the patient-specific cochlea anatomy is obtained. An algorithm based on the parallel transport frame is employed to perform the virtual insertion of the cochlear implant. Our automatic framework also incorporates the surrounding bone and nerve fibers and assigns constitutive parameters to all components of the finite element model. This model can then be used to study in silico the effects of the electrical stimulation of the cochlear implant. Results are shown on a total of 25 models of patients. In all cases, a final mesh suitable for finite element simulations was obtained, in an average time of 94 s. The framework has proven to be fast and robust, and is promising for a detailed prognosis of the cochlear implantation surgery.


Automatic framework Three dimensional finite element mesh Statistical shape model Cochlear implants Multi-object modeling Virtual surgical insertion 



This research was partially funded by the European Union Seventh Frame Programme (FP7/2007-2013), Grant agreement 304857, HEAR-EU project.


  1. 1.
    Allard, J., S. Cotin, F. Faure, P.-J. Bensoussan, F. Poyer, C. Duriez, H. Delingette, and L. Grisoni. Sofa—an open source framework for medical simulation. In: Medicine Meets Virtual Reality (MMVR’15), 2007.Google Scholar
  2. 2.
    Bogunovic, H., J. Pozo, R. Cardenes, M. Villa-Uriol, R. Blanc, M. Piotin, and A. Frangi. Automated landmarking and geometric characterization of the carotid siphon. Med. Image Anal. 16:889–903, 2012.CrossRefPubMedGoogle Scholar
  3. 3.
    Briaire, J. J., and J. H. M. Frijns. 3D mesh generation to solve the electrical volume conduction problem in the implanted inner ear. Simul Pract. Theory. 1–2:57–73, 2000.CrossRefGoogle Scholar
  4. 4.
    Bucki, M., Y. Payan, F. Cannard, B. Diot, and N. Vuillerme. Multi-modal framework for subject-specific finite element model generation aimed at pressure ulcer prevention. Comput. Methods Biomec. 16:147–148, 2013.CrossRefGoogle Scholar
  5. 5.
    Ceresa, M., N. Mangado, H. Dejea, N. Carranza, P. Mistrik, H. Kjer, S. Vera, R. Paulsen, and M. González Ballester. Patient-specific simulation of implant placement and function for cochlear implantation surgery planning. In: Medical Image Computing and Computer-Assisted Intervention, LNCS, vol. 8674, 2014, pp. 49–56.Google Scholar
  6. 6.
    Ceresa, M., N. Mangado, R. J. Andrew, and M. González Ballester. Computational models for predicting outcomes of neuroprosthesis implantation: the case of cochlear implants. Mol. Neurobiol. 52(2):934–941, 2015CrossRefPubMedGoogle Scholar
  7. 7.
    Chen, B. K., G. M. Clark, and R. Jones. Evaluation of trajectories and contact pressures for the straight nucleus cochlear implant electrode array—a two-dimensional application of finite element analysis. Med. Eng. Phys. 25:141–147, 2003.CrossRefPubMedGoogle Scholar
  8. 8.
    Cootes, T. F., and C. J. Taylor. Active shape models. Their training and application. Comput. Vis Image Underst., 61(1):38–59. 1995Google Scholar
  9. 9.
    Duchateau, N., N. Mangado, M. Ceresa, P. Mistrik, S. Vera, and M. González Ballester. Virtual cochlear electrode insertion via parallel transport frame. In: Proceedings of International Symposium on Biomedical Imaging, 2015, pp. 1398–1401.Google Scholar
  10. 10.
    Escudé, B., C. James, O. Deguine, N. Cochard, E. Eter, and B. Fraysse. The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol. Neurotol. 11:27–33, 2006.CrossRefGoogle Scholar
  11. 11.
    Fang, Q., and D. Boas. Tetrahedral mesh generation from volumetric binary and gray-scale images. In: IEEE International Symposium on Biomedical Imaging, 2009.Google Scholar
  12. 12.
    Finley, C. C., T. A. Holden, L. K. Holden, B. R. Whiting, R. A. Chole, G. J. Neely, T. E. Hullar, and M. W. Skinner. Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol. Neurotol. 29: 920–928, 2008CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Franke-Trieger, A., C. Jolly, A. Darbinjan, T. Zahnert, and D. Mürbe. Insertion depth angles of cochlear implant arrays with varying length: a temporal bone study. Otol. Neurotol. 35:58–63, 2014.CrossRefPubMedGoogle Scholar
  14. 14.
    Gani, M., G. Valentini, A. Sigrist, M. I. Kós, and C. Boëx. Implications of deep electrode insertion on cochlear implant fitting. J. Assoc. Res. Otolaryngol. 29:920–928, 2008Google Scholar
  15. 15.
    Gomes, G. T., S. V. Cauter, M. D. Beule, L. Vigneron, C. Pattyn, and E. A. Audenaert. Biomedical Imaging and Computational Modeling in Biomechanics. Springer, Dordrecht, 2013.Google Scholar
  16. 16.
    Green, K. M., Y. M. Bhatt, D. J. Mawman, M. P. O’driscoll, S. Saeed, R. Ramsden, and M. Green. Predictors of audiological outcome following cochlear implantation in adults. Cochlear Implants Int. 8:1–11, 2007.Google Scholar
  17. 17.
    Hanekom, T. Modelling encapsulation tissue around cochlear implant electrodes. Med. Biol. Eng. Comput. 1:47–55, 2005.CrossRefGoogle Scholar
  18. 18.
    Hughes, T. J. R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, 1987.Google Scholar
  19. 19.
    Kjer, H., S. Vera, J. Fagertun, M. González Ballester, and R. Paulsen. Predicting detailed inner ear anatomy from clinical pre-op CT. Int. J. Comput. Assist. Radiol. Surg. 10(Suppl1):S98–S99, 2015.Google Scholar
  20. 20.
    Kjer, H., J. Fagertun, S. Vera, D. Gil, M. A. González Ballester, and R. R. Paulsen. Free-form image registration of human cochlear μCT data using skeleton similarity as anatomical prior. Pattern Recognit. Lett. 1−7, 2015Google Scholar
  21. 21.
    Kwon, G.-H., S.-W. Chae, and K.-J. Lee. Automatic generation of tetrahedral meshes from medical images.Comput. Struct. 81:765–775, 2003.CrossRefGoogle Scholar
  22. 22.
    Larrabide, I., M. Kim, L. Augsburger, M. Villa-Uriol, D. Rüfenacht, and A. Frangi. Fast virtual deployment of self-expandable stents: method and in vitro evaluation for intracranial aneurysmal stenting. Med. Image Anal. 16:721–730, 2012.CrossRefPubMedGoogle Scholar
  23. 23.
    Lobos, C., and R. Rojas-Moraleda. From segmented medical images to surface and volume meshes, using existing tools and algorithms. In: International Conference on Adaptive Modeling and Simulation, 2013.Google Scholar
  24. 24.
    Mangado, N., M. Ceresa, N. Duchateau, H. Dejea Velardo, H. Kjer, R. Paulsen, S. Vera, P. Mistrik, J. Herrero, and M. González Ballester. Automatic generation of a computational model for monopolar stimulation of cochlear implants. Int. J. Comput. Assist. Radiol. Surg. 10(Suppl1):S67–S68, 2015.Google Scholar
  25. 25.
    Mangado, N., N. Duchateau, M. Ceresa, H. Kjer, S. Vera, P. Mistrik, J. Herrero, and M. González Ballester. Patient-specific virtual insertion of electrode array for electrical simulations of cochlear implants. Int. J. Comput. Assist. Radiol. Surg. 10(Suppl1):S102–S103, 2015.Google Scholar
  26. 26.
    Neal, M. L., and R. Kerckhoffs. Current progress in patient-specific modeling. Brief. Bioinform., 11:111–126, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Peiró, J., L. Formaggia, M. Gazzola, A. Radaelli, and V. Rigamonti. Shape reconstruction from medical images and quality mesh generation via implicit surfaces. Int. J. Numer. Methods Fluids 53:1339–1360, 2007.CrossRefGoogle Scholar
  28. 28.
    Pfeiler, T. W., D. S. Lalush, and E. G. Loboa. Semiautomated finite element mesh generation methods for a long bone. Comput. Methods Prog. Biomed. 85(3):196–202. 2007Google Scholar
  29. 29.
    Ramos, A., and J. A. Simões. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med. Eng. Phys. 28(9): 916–924. 2006Google Scholar
  30. 30.
    Rattay, F., and R. Leao. Naves and Felix, H. A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability. Hearing Res. 1–2:64–79, 2001.CrossRefGoogle Scholar
  31. 31.
    Russ, C., R. Hopf, H. S. Simon, S. Born, S. Hirsch, and V. Falk. Computational stent placement in trasncatheter aortic valve implantation. In: 6th International Symposium, ISBMS, 2014.Google Scholar
  32. 32.
    Shepherd, J. F., and C. R. Johnson. Hexahedral mesh generation for biomedical models in SCIRun. Eng. Comput. 25:97–114, 2009.CrossRefGoogle Scholar
  33. 33.
    Shewchuk, J. R. What is a good linear element? Interpolation, conditioning, and quality measures. In: 11th International Meshing Roundtable, 2002.Google Scholar
  34. 34.
    Sun, W., C. Martin, and T. Pham. Computational modeling of cardiac valve function and intervention. Annu. Rev. Biomed. Eng. 16:53–76, 2014.CrossRefPubMedGoogle Scholar
  35. 35.
    Tabor, G., P. G. Young, T. B. West, and A. Benattayallah. Mesh construction from medical imaging for multiphysics simulation: heat transfer and fluid flow in complex geometries. Eng. Appl. Comput. Fluid. Mech. 1:126–135, 2014.Google Scholar
  36. 36.
    Thomas Roland, J. J. Cochlear implant electrode insertion. Oper. Tech. Otolaryngol.—Head Neck Surg. 16: 86–92, 2005.Google Scholar
  37. 37.
    Tran, P., A. Sue, P. Wong, Q. Li, and P. Carter. Development of HEATHER for cochlear implant stimulation using a new modeling workflow. IEEE Trans. Biomed. Eng. 62:728–735, 2015.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang, J., S. Bhattacharyya, and N. Simaan. Model and parameter identification of friction during robotic insertion of cochlear-implant electrode arrays. In: IEEE Int. Conf. on Robotics and Automation, 2009.Google Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Nerea Mangado
    • 1
  • Mario Ceresa
    • 1
  • Nicolas Duchateau
    • 2
  • Hans Martin Kjer
    • 3
  • Sergio Vera
    • 4
  • Hector Dejea Velardo
    • 1
  • Pavel Mistrik
    • 5
  • Rasmus R. Paulsen
    • 3
  • Jens Fagertun
    • 3
  • Jérôme Noailly
    • 1
  • Gemma Piella
    • 1
  • Miguel Ángel González Ballester
    • 1
    • 6
  1. 1.Simbiosys Research Group, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Asclepios Research ProjectINRIA Sophia AntipolisValbonneFrance
  3. 3.Denmark Technical UniversityCopenhagenDenmark
  4. 4.Alma Medical ImagingBarcelonaSpain
  5. 5.Med-ELInnsbruckAustria
  6. 6.ICREABarcelonaSpain

Personalised recommendations