Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 8, pp 2327–2338 | Cite as

Shear Stress Metrics and Their Relation to Atherosclerosis: An In Vivo Follow-up Study in Atherosclerotic Mice

  • David De WildeEmail author
  • Bram Trachet
  • Guido R. Y. De Meyer
  • Patrick Segers
Article

Abstract

It is generally accepted that low and oscillatory wall shear stress favors the initiation and development of atherosclerosis. However, a quantitative analysis of the association between shear stress metrics at baseline and lesion prevalence at a later stage is challenging to perform in vivo on a within-subject basis. In this study, we assessed carotid hemodynamics and derived hemodynamic wall parameters from subject-specific fluid–structure interaction simulations in the left and right carotid arteries of 4 ApoE−/− mice prior to disease development. We then applied a point-by-point quantitative association (surrogate sample data analysis) between various established and more recent shear related parameters and the extent of macrophage infiltration at a later stage. We conclude that, for the atherosclerotic murine carotid bifurcation, (i) there is an association between hemodynamics and macrophage infiltration; (ii) this correlation is most apparent when assessed at the level of the entire carotid bifurcation; (iii) the strongest spatial correlation between hemodynamics and atherosclerosis development was found for the time averaged wall shear stress (negative correlation) and the relative residence time (positive correlation); (iv) aggregating the data leads to an overestimation of the correlation.

Keywords

Fluid–structure interaction Mouse models Hemodynamics Wall shear stress Atherosclerosis CT 

Notes

Acknowledgments

David De Wilde is supported by a research grant of the Flemish government agency for Innovation by Science and Technology (IWT). Bram Trachet receives support from a BOF grand of Ghent University. We thank Francisco Londono, Mathias Peirlinck, Christian Vanhove, Benedicte Descamps, Scharon Bruneel, Bert Vandeghinste, Nic Debusschere, Abigail Swillens, Joris Degroote, Jan Vierendeels, Francesco Iannaccone, Liesbeth Taelman, Joris Bols and Carole Van der Donckt for their assistance.

Conflict of interest

No conflict of interest.

References

  1. 1.
    Antiga, L., and D. A. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23:704–713, 2004.CrossRefPubMedGoogle Scholar
  2. 2.
    De Wilde D., B. Trachet, N. Debusschere, F. Iannaccone, A. Swillens, J. Degroote, J. Vierendeels, G.R.Y. De Meyer, P. Segers. Assessment of shear stress related parameters in the carotid bifurcation using mouse-specific FSI simulations. J Biomech. Accepted for publication,2015.Google Scholar
  3. 3.
    De Wilde, D., B. Trachet, C. Van der Donckt, B. Vandeghinste, B. Descamps, C. Vanhove, G. R. Y. De Meyer, and P. Segers. Vulnerable plaque detection and quantification with gold particle-enhanced computed tomography in atherosclerotic mouse models. Mol. Imaging. 14:9–19, 2015.Google Scholar
  4. 4.
    Gelfand, B. D., F. H. Epstein, and B. R. Blackman. Spatial and spectral heterogeneity of time-varying shear stress profiles in the carotid bifurcation by phase-contrast MRI. J. Magn. Reson. Imaging 24:1386–1392, 2006.CrossRefPubMedGoogle Scholar
  5. 5.
    Gijsen, F. J. H. H., J. J. Wentzel, A. Thury, B. Lamers, J. C. H. H. Schuurbiers, P. W. Serruys, and A. F. van der Steen. A new imaging technique to study 3-D plaque and shear stress distribution in human coronary artery bifurcations in vivo. J. Biomech. 40:2349–2357, 2007.CrossRefPubMedGoogle Scholar
  6. 6.
    Glagov, S., C. Zarins, D. P. Giddens, and D. N. Ku. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med. 112:1018–1031, 1988.PubMedGoogle Scholar
  7. 7.
    He, X. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118:74–82, 1996.CrossRefPubMedGoogle Scholar
  8. 8.
    Himburg, H. A., S. E. Dowd, and M. H. Friedman. Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am. J. Physiol. Heart Circ. Physiol. 293:H645–H653, 2007.CrossRefPubMedGoogle Scholar
  9. 9.
    Himburg, H. A., and M. H. Friedman. Correspondence of low mean shear and high harmonic content in the porcine iliac arteries. J. Biomech. Eng. 128:852–856, 2006.CrossRefPubMedGoogle Scholar
  10. 10.
    Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X.-M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.CrossRefPubMedGoogle Scholar
  11. 11.
    Insull, W. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am. J. Med. 122:S3–S14, 2009.CrossRefPubMedGoogle Scholar
  12. 12.
    Jawien, J., R. Nastalek, R. Korbut, J. Jawień, P. Nastałek, and R. Korbut. Mouse models of experimental atherosclerosis. J. Physiol. Pharmacol. 55:503–517, 2004.PubMedGoogle Scholar
  13. 13.
    Joshi, A. K., R. L. Leask, J. G. Myers, M. Ojha, J. Butany, and C. R. Ethier. Intimal thickness is not associated with wall shear stress patterns in the human right coronary artery. Arterioscler. Thromb. Vasc. Biol. 24:2408–2413, 2004.CrossRefPubMedGoogle Scholar
  14. 14.
    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 5:293–302, 1985.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee, S.-W., L. Antiga, and D. A. Steinman. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J. Biomech. Eng. 131:061013, 2009.CrossRefPubMedGoogle Scholar
  16. 16.
    Libby, P. Inflammation in atherosclerosis. Nature 420:868–874, 2002.CrossRefPubMedGoogle Scholar
  17. 17.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.CrossRefPubMedGoogle Scholar
  18. 18.
    Peiffer, V., A. A. Bharath, S. J. Sherwin, and P. D. Weinberg. A novel method for quantifying spatial correlations between patterns of atherosclerosis and hemodynamic factors. J. Biomech. Eng. 135:021023, 2013.CrossRefPubMedGoogle Scholar
  19. 19.
    Peiffer, V., S. J. Sherwin, and P. D. Weinberg. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc. Res. 99:242–250, 2013.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Peiffer, V., S. J. Sherwin, and P. D. Weinberg. Computation in the rabbit aorta of a new metric—the transverse wall shear stress—to quantify the multidirectional character of disturbed blood flow. J. Biomech. 46:2651–2658, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pendse, A. A., J. M. Arbones-Mainar, L. A. Johnson, M. K. Altenburg, and N. Maeda. Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J. Lipid Res. 50(Suppl):S178–S182, 2009.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Rowland, E. M., Y. Mohamied, K. Yean Choi, E. L. Bailey, and P. D. Weinberg. Comparison of statistical methods for assessing spatial correlations between maps of different arterial properties. J. Biomech. Eng. 137:101003, 2015.CrossRefPubMedGoogle Scholar
  23. 23.
    Van der Donckt, C., J. L. Van Herck, D. M. Schrijvers, G. Vanhoutte, M. Verhoye, I. Blockx, et al. Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death. Eur. Heart J. 36:1049–1058, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Whitman, S. C. A practical approach to using mice in atherosclerosis research. Clin. Biochem. Rev. 25:81–93, 2004.PubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  1. 1.IBiTech-bioMMeda, iMinds Medical ITGhent UniversityGhentBelgium
  2. 2.Institute for BioengineeringEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Division of PhysiopharmacologyUniversity of AntwerpAntwerpBelgium
  4. 4.bioMMedaGhentBelgium

Personalised recommendations