Annals of Biomedical Engineering

, Volume 44, Issue 7, pp 2168–2180 | Cite as

Accuracy of Functional and Predictive Methods to Calculate the Hip Joint Center in Young Non-pathologic Asymptomatic Adults with Dual Fluoroscopy as a Reference Standard

  • Niccolo M. Fiorentino
  • Michael J. Kutschke
  • Penny R. Atkins
  • K. Bo Foreman
  • Ashley L. Kapron
  • Andrew E. AndersonEmail author


Predictions from biomechanical models of gait may be sensitive to joint center locations. Most often, the hip joint center (HJC) is derived from locations of reflective markers adhered to the skin. Here, predictive techniques use regression equations of pelvic anatomy to estimate the HJC, whereas functional methods track motion of markers placed at the pelvis and femur during a coordinated motion. Skin motion artifact may introduce errors in the estimate of HJC for both techniques. Quantifying the accuracy of these methods is an area of open investigation. In this study, we used dual fluoroscopy (DF) (a dynamic X-ray imaging technique) and three-dimensional reconstructions from computed tomography images, to measure HJC locations in vivo. Using dual fluoroscopy as the reference standard, we then assessed the accuracy of three predictive and two functional methods. Eleven non-pathologic subjects were imaged with DF and reflective skin marker motion capture. Additionally, DF-based solutions generated virtual markers placed on bony landmarks, which were input to the predictive and functional methods to determine if estimates of the HJC improved. Using skin markers, functional methods had better mean agreement with the HJC measured by DF (11.0 ± 3.3 mm) than predictive methods (18.1 ± 9.5 mm); estimates from functional and predictive methods improved when using the DF-based solutions (1.3 ± 0.9 and 17.5 ± 8.6 mm, respectively). The Harrington method was the best predictive technique using both skin markers (13.2 ± 6.5 mm) and DF-based solutions (10.6 ± 2.5 mm). The two functional methods had similar accuracy using skin makers (11.1 ± 3.6 and 10.8 ± 3.2 mm) and DF-based solutions (1.2 ± 0.8 and 1.4 ± 1.0 mm). Overall, functional methods were superior to predictive methods for HJC estimation. However, the improvements observed when using the DF-based solutions suggest that skin motion artifact is a large source of error for the functional methods.


Arthrokinematics Gait analysis Motion capture Hip joint center In vivo 



The authors acknowledge financial support from the National Institutes of Health (NIH-R21AR063844, F32AR067075, S10RR026565) and the LS Peery Discovery Program in Musculoskeletal Restoration. The research content herein is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or LS-Peery Foundation. The authors also acknowledge the contributions of Madeline Singer, Justine Goebel, Tyler Skinner, Michael Austin West and Christopher Aronitz.

Conflict of interest

The corresponding author and co-authors do not have a conflict of interest, financial or otherwise, that would inappropriately influence or bias the research reported herein.


  1. 1.
    Begon, M., T. Monnet, and P. Lacouture. Effects of movement for estimating the hip joint centre. Gait Posture 25:353–359, 2007.CrossRefPubMedGoogle Scholar
  2. 2.
    Bell, A. L., D. R. Pedersen, and R. A. Brand. A comparison of the accuracy of several hip center location prediction methods. J. Biomech. 23:617–621, 1990.CrossRefPubMedGoogle Scholar
  3. 3.
    Bey, M. J., R. Zauel, S. K. Brock, and S. Tashman. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J. Biomech. Eng. 128:604–609, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bland, J. M., and D. G. Altman. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 8:135–160, 1999.CrossRefPubMedGoogle Scholar
  5. 5.
    Camomilla, V., A. Cereatti, G. Vannozzi, and A. Cappozzo. An optimized protocol for hip joint centre determination using the functional method. J. Biomech. 39:1096–1106, 2006.CrossRefPubMedGoogle Scholar
  6. 6.
    Davis, R. B. O., S. Ounpuu, D. Tyburski, and J. R. Gage. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 10:575–587, 1991.CrossRefGoogle Scholar
  7. 7.
    Della, C. U. L., A. Leardini, L. Chiari, and A. Cappozzo. Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21:226–237, 2005.CrossRefGoogle Scholar
  8. 8.
    Ehrig, R. M., M. O. Heller, S. Kratzenstein, G. N. Duda, A. Trepczynski, and W. R. Taylor. The SCoRE residual: a quality index to assess the accuracy of joint estimations. J. Biomech. 44:1400–1404, 2011.CrossRefPubMedGoogle Scholar
  9. 9.
    Fuller, L., L.-J. Liu, M. C. Murphy, and R. W. Mann. A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers. Hum. Mov. Sci. 16:219–242, 1997.CrossRefGoogle Scholar
  10. 10.
    Garling, E. H., B. L. Kaptein, B. Mertens, W. Barendregt, H. E. Veeger, R. G. Nelissen, and E. R. Valstar. Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. J. Biomech. 40(Suppl 1):S18–S24, 2007.CrossRefPubMedGoogle Scholar
  11. 11.
    Hara, R., M. Sangeux, R. Baker, and J. McGinley. Quantification of pelvic soft tissue artifact in multiple static positions. Gait Posture 39:712–717, 2014.CrossRefPubMedGoogle Scholar
  12. 12.
    Harrington, M. E., A. B. Zavatsky, S. E. Lawson, Z. Yuan, and T. N. Theologis. Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J. Biomech. 40:595–602, 2007.CrossRefPubMedGoogle Scholar
  13. 13.
    Harris, M. D., S. P. Reese, C. L. Peters, J. A. Weiss, and A. E. Anderson. Three-dimensional quantification of femoral head shape in controls and patients with cam-type femoroacetabular impingement. Ann. Biomed. Eng. 41:1162–1171, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Henak, C. R., A. L. Kapron, A. E. Anderson, B. J. Ellis, S. A. Maas, and J. A. Weiss. Specimen-specific predictions of contact stress under physiological loading in the human hip: validation and sensitivity studies. Biomech. Model. Mechanobiol. 13:387–400, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hicks, J. L., and J. G. Richards. Clinical applicability of using spherical fitting to find hip joint centers. Gait Posture 22:138–145, 2005.CrossRefPubMedGoogle Scholar
  16. 16.
    Kainz, H., C. P. Carty, L. Modenese, R. N. Boyd, and D. G. Lloyd. Estimation of the hip joint centre in human motion analysis: a systematic review. Clin. Biomech. (Bristol, Avon) 30:319–329, 2015.CrossRefGoogle Scholar
  17. 17.
    Kapron, A. L., S. K. Aoki, C. L. Peters, S. A. Maas, M. J. Bey, R. Zauel, and A. E. Anderson. Accuracy and feasibility of dual fluoroscopy and model-based tracking to quantify in vivo hip kinematics during clinical exams. J. Appl. Biomech. 30:461–470, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lenaerts, G., W. Bartels, F. Gelaude, M. Mulier, A. Spaepen, G. Van der Perre, and I. Jonkers. Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait. J. Biomech. 42:1246–1251, 2009.CrossRefPubMedGoogle Scholar
  19. 19.
    Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134:011005, 2012.CrossRefPubMedGoogle Scholar
  20. 20.
    Piazza, S. J., A. Erdemir, N. Okita, and P. R. Cavanagh. Assessment of the functional method of hip joint center location subject to reduced range of hip motion. J. Biomech. 37:349–356, 2004.CrossRefPubMedGoogle Scholar
  21. 21.
    Piazza, S. J., N. Okita, and P. R. Cavanagh. Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation. J. Biomech. 34:967–973, 2001.CrossRefPubMedGoogle Scholar
  22. 22.
    Sangeux, M. On the implementation of predictive methods to locate the hip joint centres. Gait Posture 42:402–405, 2015.CrossRefPubMedGoogle Scholar
  23. 23.
    Sangeux, M., A. Peters, and R. Baker. Hip joint centre localization: evaluation on normal subjects in the context of gait analysis. Gait Posture 34:324–328, 2011.CrossRefPubMedGoogle Scholar
  24. 24.
    Sangeux, M., H. Pillet, and W. Skalli. Which method of hip joint centre localisation should be used in gait analysis? Gait Posture 40:20–25, 2014.CrossRefPubMedGoogle Scholar
  25. 25.
    Schwartz, M. H., and A. Rozumalski. A new method for estimating joint parameters from motion data. J. Biomech. 38:107–116, 2005.CrossRefPubMedGoogle Scholar
  26. 26.
    Stagni, R., A. Leardini, A. Cappozzo, and M. Grazia. Benedetti and A. Cappello. Effects of hip joint centre mislocation on gait analysis results. J. Biomech. 33:1479–1487, 2000.CrossRefPubMedGoogle Scholar
  27. 27.
    Taylor, W. R., E. I. Kornaropoulos, G. N. Duda, S. Kratzenstein, R. M. Ehrig, A. Arampatzis, and M. O. Heller. Repeatability and reproducibility of OSSCA, a functional approach for assessing the kinematics of the lower limb. Gait Posture 32:231–236, 2010.CrossRefPubMedGoogle Scholar
  28. 28.
    ViconNexus1.8.5. Manually Filling Gaps in Trial Data. Web Help Files: Vicon Motion Systems Limited, 2013.Google Scholar
  29. 29.
    Winter, D. A. Biomechanics and Motor Control of Human Movement. Hoboken, NJ: Wiley, 2009.CrossRefGoogle Scholar
  30. 30.
    Wu, G., S. Siegler, P. Allard, C. Kirtley, A. Leardini, D. Rosenbaum, M. Whittle, D. D. D’Lima, L. Cristofolini, H. Witte, O. Schmid, and I. Stokes. Standardization and B. Terminology Committee of the International Society of. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. J. Biomech. 35:543–548, 2002.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Niccolo M. Fiorentino
    • 1
  • Michael J. Kutschke
    • 1
  • Penny R. Atkins
    • 1
    • 2
  • K. Bo Foreman
    • 1
    • 3
  • Ashley L. Kapron
    • 1
  • Andrew E. Anderson
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of OrthopaedicsUniversity of UtahSalt Lake CityUSA
  2. 2.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  3. 3.Department of Physical TherapyUniversity of UtahSalt Lake CityUSA
  4. 4.Scientific Computing and Imaging InstituteSalt Lake CityUSA

Personalised recommendations