Annals of Biomedical Engineering

, Volume 44, Issue 3, pp 667–679 | Cite as

Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues

  • Mehmet S. Ozturk
  • Chao-Wei Chen
  • Robin Ji
  • Lingling Zhao
  • Bao-Ngoc B. Nguyen
  • John P. Fisher
  • Yu Chen
  • Xavier Intes
Nondestructive Characterization of Biomaterials for Tissue Engineering and Drug Delivery


Optimization of regenerative medicine strategies includes the design of biomaterials, development of cell-seeding methods, and control of cell-biomaterial interactions within the engineered tissues. Among these steps, one paramount challenge is to non-destructively image the engineered tissues in their entirety to assess structure, function, and molecular expression. It is especially important to be able to enable cell phenotyping and monitor the distribution and migration of cells throughout the bulk scaffold. Advanced fluorescence microscopic techniques are commonly employed to perform such tasks; however, they are limited to superficial examination of tissue constructs. Therefore, the field of tissue engineering and regenerative medicine would greatly benefit from the development of molecular imaging techniques which are capable of non-destructive imaging of three-dimensional cellular distribution and maturation within a tissue-engineered scaffold beyond the limited depth of current microscopic techniques. In this review, we focus on an emerging depth-resolved optical mesoscopic imaging technique, termed laminar optical tomography (LOT) or mesoscopic fluorescence molecular tomography (MFMT), which enables longitudinal imaging of cellular distribution in thick tissue engineering constructs at depths of a few millimeters and with relatively high resolution. The physical principle, image formation, and instrumentation of LOT/MFMT systems are introduced. Representative applications in tissue engineering include imaging the distribution of human mesenchymal stem cells embedded in hydrogels, imaging of bio-printed tissues, and in vivo applications.


Laminar optical tomography (LOT) Fluorescence laminar optical tomography (FLOT) Mesoscopic fluorescence molecular tomography (MFMT) Tissue engineering Non-destructive imaging Bioprinting Optical imaging In vivo imaging 



This work is supported by the NIH R01 EB014946-01A1 (YC) and NSF CBET-1263455 (XI).


  1. 1.
    Abou-Elkacem, L., S. Bjorn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle. High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice. Eur. Radiol. 22(9):1955–1962, 2012.CrossRefPubMedGoogle Scholar
  2. 2.
    Alerstam, E., T. Svensson, and S. Andersson-Engels. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J. Biomed. Opt. 13(6):060504, 2008.CrossRefPubMedGoogle Scholar
  3. 3.
    Arridge, S. R., and J. C. Schotland. Optical tomography: forward and inverse problems. Inverse Prob. 25:123010, 2009.CrossRefGoogle Scholar
  4. 4.
    Arridge, S. R., and M. Schweiger. Image reconstruction in optical tomography. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354):717–726, 1997.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bhardwaj, N., and S. C. Kundu. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3):325–347, 2010.CrossRefPubMedGoogle Scholar
  6. 6.
    Bjorn, S., K. H. Englmeier, V. Ntziachristos, and R. Schulz. Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography. J. Biomed. Opt. 16(4):046005, 2011.CrossRefPubMedGoogle Scholar
  7. 7.
    Bjorn, S., V. Ntziachristos, and R. Schulz. Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media. Opt. Express 18(8):8422–8429, 2010.CrossRefPubMedGoogle Scholar
  8. 8.
    Burgess, S. A., M. B. Bouchard, B. H. Yuan, and E. M. C. Hillman. Simultaneous multiwavelength laminar optical tomography. Opt. Lett. 33(22):2710–2712, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chartrand, R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14:707–710, 2007.CrossRefGoogle Scholar
  10. 10.
    Chen, C. W., and Y. Chen. Optimization of design parameters for fluorescence laminar optical tomography. J. Innov. Opt. Health Sci. 4:309–323, 2011.CrossRefGoogle Scholar
  11. 11.
    Chen, J., Q. Fang, and X. Intes. Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography. J. Biomed. Opt. 17(10):106009, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen, J., and X. Intes. Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency. Med. Phys. 38(10):5788–5798, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chen, J., V. Venugopal, and X. Intes. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates. Biomed. Opt. Express 2(4):871–886, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen, Y., S. Yuan, J. Wierwille, R. Naphas, Q. Li, T. R. Blackwell, P. T. Winnard, Jr, V. Raman, and K. Glunde. Integrated optical coherence tomography (OCT) and fluorescence laminar optical tomography (FLOT). IEEE J. Sel. Top. Quantum Electron. 16:755–766, 2010.CrossRefGoogle Scholar
  15. 15.
    Crilly, R. J., W. F. Cheong, B. Wilson, and J. R. Spears. Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation. Appl. Opt. 36(25):6513–6519, 1997.CrossRefPubMedGoogle Scholar
  16. 16.
    Derby, B. Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926, 2012.CrossRefPubMedGoogle Scholar
  17. 17.
    Dunn, A., and D. Boas. Transport-based image reconstruction in turbid media with small source-detector separations. Opt. Lett. 25(24):1777–1779, 2000.CrossRefPubMedGoogle Scholar
  18. 18.
    Endoh, R., M. Fujii, and K. Nakayama. Depth-adaptive regularized reconstruction for reflection diffuse optical tomography. Opt. Rev. 15:51–56, 2008.CrossRefGoogle Scholar
  19. 19.
    Fang, Q., and D. A. Boas. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17(22):20178–20190, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gardner, A. R., C. K. Hayakawa, and V. Venugopalan. Coupled forward-adjoint Monte Carlo simulation of spatial-angular light fields to determine optical sensitivity in turbid media. J. Biomed. Opt. 19(6):065003, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Georgakoudi, I., W. L. Rice, M. Hronik-Tupaj, and D. L. Kaplan. Optical spectroscopy and imaging for the noninvasive evaluation of engineered tissues. Tissue Eng Part B Rev 14(4):321–340, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Griffith, L. G., and G. Naughton. Tissue engineering—current challenges and expanding opportunities. Science 295(5557):1009–1014, 2002.CrossRefPubMedGoogle Scholar
  23. 23.
    Guillotin, B., and F. Guillemot. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29(4):183–190, 2011.CrossRefPubMedGoogle Scholar
  24. 24.
    Hayakawa, C. K., J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan. Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues. Opt. Lett. 26(17):1335–1337, 2001.CrossRefPubMedGoogle Scholar
  25. 25.
    Hillman, E. M. C., O. Bernus, E. Pease, M. B. Bouchard, and A. Pertsov. Depth-resolved optical imaging of transmural electrical propagation in perfused heart. Opt. Express 15:17827–17841, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hillman, E. M., D. A. Boas, A. M. Dale, and A. K. Dunn. Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media. Opt. Lett. 29(14):1650–1652, 2004.CrossRefPubMedGoogle Scholar
  27. 27.
    Hillman, E. M. C., and S. A. Burgess. Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography. Laser Photonics Rev. 3(1–2):159–179, 2009.CrossRefGoogle Scholar
  28. 28.
    Hillman, E. M., A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas. Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 35(1):89–104, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hoover, E. E., and J. A. Squier. Advances in multiphoton microscopy technology. Nat. Photonics 7(2):93–101, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Intes, X., V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance. Projection access order in algebraic reconstruction technique for diffuse optical tomography. Phys. Med. Biol. 47(1):N1–N10, 2002.CrossRefPubMedGoogle Scholar
  31. 31.
    Intes, X., J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance. In vivo continuous-wave optical breast imaging enhanced with indocyanine green. Med. Phys. 30(6):1039–1047, 2003.CrossRefPubMedGoogle Scholar
  32. 32.
    J. Pawley, ed. Handbook of Biological Confocal Microscopy. 3rd ed. New York: Springer, 2006.Google Scholar
  33. 33.
    Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58(11):R37–R61, 2013.CrossRefPubMedGoogle Scholar
  34. 34.
    Jaedicke, V., S. Agcaer, F. E. Robles, M. Steinert, D. Jones, S. Goebel, N. C. Gerhardt, H. Welp, and M. R. Hofmann. Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography. Biomed Opt Express 4(12):2945–2961, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Keller, J. B. Inverse problems. Am. Math. Mon. 83:107, 1976.CrossRefGoogle Scholar
  36. 36.
    Kobat, D., N. G. Horton, and C. Xu. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 16(10):106014, 2011.CrossRefPubMedGoogle Scholar
  37. 37.
    Langer, R., and J. P. Vacanti. Tissue engineering. Science 260(5110):920–926, 1993.CrossRefPubMedGoogle Scholar
  38. 38.
    Lee, K. Y., and D. J. Mooney. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1):106–126, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Morgner, U., W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto. Spectroscopic optical coherence tomography. Opt. Lett. 25(2):111–113, 2000.CrossRefPubMedGoogle Scholar
  40. 40.
    Muldoon, T. J., S. A. Burgess, B. R. Chen, D. Ratner, and E. M. Hillman. Analysis of skin lesions using laminar optical tomography. Biomed Opt. Express 3(7):1701–1712, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8):773–785, 2014.CrossRefPubMedGoogle Scholar
  42. 42.
    Ouakli, N., E. Guevara, S. Dubeau, E. Beaumont, and F. Lesage. Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats. Opt. Express 18(10):10068–10077, 2010.CrossRefPubMedGoogle Scholar
  43. 43.
    Ozturk, M. S., V. K. Lee, L. Zhao, G. Dai, and X. Intes. Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue. J. Biomed. Opt. 18(10):100501, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ozturk, M. S., D. Rohrbach, U. Sunar, and X. Intes. Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer. Acad. Radiol. 21(2):271–280, 2014.CrossRefPubMedGoogle Scholar
  45. 45.
    Pian, Q., C. Wang, W. Cong, G. Wang, and X. Intes. Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues. Curr. Mol. Imaging 3:72–87, 2014.CrossRefGoogle Scholar
  46. 46.
    Pogue, B., T. McBride, U. Osterberg, and K. Paulsen. Comparison of imaging geometries for diffuse optical tomography of tissue. Opt. Express 4(8):270–286, 1999.CrossRefPubMedGoogle Scholar
  47. 47.
    Pogue, B. W., T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen. Spatially variant regularization improves diffuse optical tomography. Appl. Opt. 38(13):2950–2961, 1999.CrossRefPubMedGoogle Scholar
  48. 48.
    Robles, F. E., C. Wilson, G. Grant, and A. Wax. Molecular imaging true-colour spectroscopic optical coherence tomography. Nat. Photonics 5(12):744–747, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Slaughter, B. V., S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas. Hydrogels in regenerative medicine. Adv. Mater. 21(32–33):3307–3329, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    So, P., H. Kim, and I. Kochevar. Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures. Opt. Express 3(9):339–350, 1998.CrossRefPubMedGoogle Scholar
  51. 51.
    Suzen, M., A. Giannoula, and T. Durduran. Compressed sensing in diffuse optical tomography. Opt. Express 18(23):23676–23690, 2010.CrossRefPubMedGoogle Scholar
  52. 52.
    Tan, W., A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart. Optical coherence tomography of cell dynamics in three-dimensional tissue models. Opt. Express 14(16):7159–7171, 2006.CrossRefPubMedGoogle Scholar
  53. 53.
    Tan, W., A. Sendemir-Urkmez, L. J. Fahrner, R. Jamison, D. Leckband, and S. A. Boppart. Structural and functional optical imaging of three-dimensional engineered tissue development. Tissue Eng. 10(11–12):1747–1756, 2004.CrossRefPubMedGoogle Scholar
  54. 54.
    Tan, W., C. Vinegoni, J. J. Norman, T. A. Desai, and S. A. Boppart. Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs. Microsc. Res. Tech. 70(4):361–371, 2007.CrossRefPubMedGoogle Scholar
  55. 55.
    Tanbakuchi, A. A., A. R. Rouse, and A. F. Gmitro. Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media. J. Biomed. Opt. 14(4):044024, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tay, B. C., C. Fu, B. K. Ng, J. M. Liu, S. Chou, and C. Chua. Monitoring cell proliferation in silk fibroin scaffolds using spectroscopic optical coherence tomography. Microw. Opt. Technol. Lett. 55:2587–2594, 2013.CrossRefGoogle Scholar
  57. 57.
    Thevenot, P., A. Nair, J. Dey, J. Yang, and L. Tang. Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds. Tissue Eng Part C Methods 14(4):319–331, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tikhonov, A. N., A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola. Numerical Methods for the Solution of Ill-Posed Problems. Dordrecht: Kluwer Academic Publishers, 1995.CrossRefGoogle Scholar
  59. 59.
    Ueng, S. W., M. S. Lee, S. S. Lin, E. C. Chan, and S. J. Liu. Development of a biodegradable alginate carrier system for antibiotics and bone cells. J. Orthop. Res. 25(1):62–72, 2007.CrossRefPubMedGoogle Scholar
  60. 60.
    Van Vlierberghe, S., P. Dubruel, and E. Schacht. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5):1387–1408, 2011.CrossRefPubMedGoogle Scholar
  61. 61.
    Venugopal, V., and X. Intes. Recent advances in optical mammography. Curr. Med. Imaging Rev. 8:244–259, 2012.CrossRefGoogle Scholar
  62. 62.
    Vroom, J. M., K. J. De Grauw, H. C. Gerritsen, D. J. Bradshaw, P. D. Marsh, G. K. Watson, J. J. Birmingham, and C. Allison. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65(8):3502–3511, 1999.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Wang, L., R. M. Shelton, P. R. Cooper, M. Lawson, J. T. Triffitt, and J. E. Barralet. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24(20):3475–3481, 2003.CrossRefPubMedGoogle Scholar
  64. 64.
    Wang, L. V., and H. Wu. Biomedical Optics: Principles and Imaging. Hoboken, NJ: Wiley, 2007.Google Scholar
  65. 65.
    Yang, Y., A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang. Investigation of optical coherence tomography as an imaging modality in tissue engineering. Phys. Med. Biol. 51(7):1649–1659, 2006.CrossRefPubMedGoogle Scholar
  66. 66.
    Yang, F., M. S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes. High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing. IEEE Trans. Biomed. Eng. 62(1):248–255, 2015.CrossRefPubMedGoogle Scholar
  67. 67.
    Yeatts, A. B., and J. P. Fisher. Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells. Tissue Eng. Part C Methods 17(3):337–348, 2011.CrossRefPubMedGoogle Scholar
  68. 68.
    Yeatts, A. B., C. N. Gordon, and J. P. Fisher. Formation of an aggregated alginate construct in a tubular perfusion system. Tissue Eng. Part C Methods 17(12):1171–1178, 2011.CrossRefPubMedGoogle Scholar
  69. 69.
    Yodh, A., and B. Chance. Spectroscopy and imaging with diffusing light. Phys. Today 48(3):34–40, 1995.CrossRefGoogle Scholar
  70. 70.
    Yuan, B. H. Radiative transport in the delta-P1 approximation for laminar optical tomography. J. Innov. Opt. Health Sci. 2:149–163, 2009.CrossRefGoogle Scholar
  71. 71.
    Yuan, B. H., S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman. A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast. Rev. Sci. Instrum. 80(4):043706, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yuan, S., Q. Li, J. Jiang, A. Cable, and Y. Chen. Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography. Opt. Lett. 34(11):1615–1617, 2009.CrossRefPubMedGoogle Scholar
  73. 73.
    Zhao, L., V. K. Lee, S. S. Yoo, G. Dai, and X. Intes. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33(21):5325–5332, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zhao, L., H. Yang, W. Cong, G. Wang, and X. Intes. L(p) regularization for early gate fluorescence molecular tomography. Opt. Lett. 39(14):4156–4159, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhu, C., and Q. Liu. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt. 18(5):50902, 2013.CrossRefPubMedGoogle Scholar
  76. 76.
    Zhu, W., Y. Wang, Y. Yao, J. Chang, H. L. Graber, and R. L. Barbour. Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14(4):799–807, 1997.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Mehmet S. Ozturk
    • 1
  • Chao-Wei Chen
    • 2
  • Robin Ji
    • 1
  • Lingling Zhao
    • 1
  • Bao-Ngoc B. Nguyen
    • 2
  • John P. Fisher
    • 2
  • Yu Chen
    • 2
  • Xavier Intes
    • 1
  1. 1.Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations