Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 7, pp 2103–2113 | Cite as

Effect of Dynamic Culture and Periodic Compression on Human Mesenchymal Stem Cell Proliferation and Chondrogenesis

  • Ting Guo
  • Li Yu
  • Casey G. Lim
  • Addison S. Goodley
  • Xuan Xiao
  • Jesse K. Placone
  • Kimberly M. Ferlin
  • Bao-Ngoc B. Nguyen
  • Adam H. Hsieh
  • John P. FisherEmail author
Article

Abstract

We have recently developed a bioreactor that can apply both shear and compressive forces to engineered tissues in dynamic culture. In our system, alginate hydrogel beads with encapsulated human mesenchymal stem cells (hMSCs) were cultured under different dynamic conditions while subjected to periodic, compressive force. A customized pressure sensor was developed to track the pressure fluctuations when shear forces and compressive forces were applied. Compared to static culture, dynamic culture can maintain a higher cell population throughout the study. With the application of only shear stress, qRT-PCR and immunohistochemistry revealed that hMSCs experienced less chondrogenic differentiation than the static group. The second study showed that chondrogenic differentiation was enhanced by additional mechanical compression. After 14 days, alcian blue staining showed more extracellular matrix formed in the compression group. The upregulation of the positive chondrogenic markers such as Sox 9, aggrecan, and type II collagen were demonstrated by qPCR. Our bioreactor provides a novel approach to apply mechanical forces to engineered cartilage. Results suggest that a combination of dynamic culture with proper mechanical stimulation may promote efficient progenitor cell expansion in vitro, thereby allowing the culture of clinically relevant articular chondrocytes for the treatment of articular cartilage defects.

Keywords

Mesenchymal stem cell Chondrogenesis Differentiation Compression Cartilage Dynamic culture 

Notes

Acknowledgments

This study was funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (R01 AR061460) as well as by the National Science Foundation (CBET 1264517). This work was also funded by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (Grant number: 230303). The authors thank Feng Gao from Cornell University for his help on data processing and Dr. Hannah B. Baker for reviewing the manuscript.

References

  1. 1.
    Adesida, A. B., A. Mulet-Sierra, and N. M. Jomha. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res. Ther. 3:9, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Angele, P., D. Schumann, M. Angele, B. Kinner, C. Englert, R. Hente, B. Fuchtmeier, M. Nerlich, C. Neumann, and R. Kujat. Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology 41:335–346, 2004.PubMedGoogle Scholar
  3. 3.
    Angele, P., J. U. Yoo, C. Smith, J. Mansour, K. J. Jepsen, M. Nerlich, and B. Johnstone. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J. Orthop. Res. 21:451–457, 2003.CrossRefPubMedGoogle Scholar
  4. 4.
    Bae, H., and M. Yu. Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold. Opt. Express 20:14573–14583, 2012.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen, X., H. Xu, C. Wan, M. McCaigue, and G. Li. Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 24:2052–2059, 2006.CrossRefPubMedGoogle Scholar
  6. 6.
    Felson, D. T., R. C. Lawrence, P. A. Dieppe, R. Hirsch, C. G. Helmick, J. M. Jordan, R. S. Kington, N. E. Lane, M. C. Nevitt, Y. Q. Zhang, M. Sowers, T. McAlindon, T. D. Spector, A. R. Poole, S. Z. Yanovski, G. Ateshian, L. Sharma, J. A. Buckwalter, K. D. Brandt, and J. F. Fries. Osteoarthritis: new insights. Part 1: The disease and its risk factors. Ann. Intern. Med. 133:635–646, 2000.CrossRefPubMedGoogle Scholar
  7. 7.
    Gruber, H. E., and E. N. Hanley, Jr. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation. BMC Musculoskelet. Disord. 1:1, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gupta, P. K., A. K. Das, A. Chullikana, and A. S. Majumdar. Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res. Ther. 3:25, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463, 2002.CrossRefPubMedGoogle Scholar
  10. 10.
    Kanichai, M., D. Ferguson, P. J. Prendergast, and V. A. Campbell. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. J. Cell. Physiol. 216:708–715, 2008.CrossRefPubMedGoogle Scholar
  11. 11.
    King, J. A., and W. M. Miller. Bioreactor development for stem cell expansion and controlled differentiation. Curr. Opin. Chem. Biol. 11:394–398, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kock, L. M., J. Malda, W. J. Dhert, K. Ito, and D. Gawlitta. Flow-perfusion interferes with chondrogenic and hypertrophic matrix production by mesenchymal stem cells. J. Biomech. 47:2122–2129, 2014.CrossRefPubMedGoogle Scholar
  13. 13.
    Kock, L., C. C. van Donkelaar, and K. Ito. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 347:613–627, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kong, D., T. Zheng, M. Zhang, D. Wang, S. Du, X. Li, J. Fang, and X. Cao. Static mechanical stress induces apoptosis in rat endplate chondrocytes through MAPK and mitochondria-dependent caspase activation signaling pathways. PLoS One 8:e69403, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kupcsik, L., M. J. Stoddart, Z. Li, L. M. Benneker, and M. Alini. Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering. Tissue Eng. A 16:1845–1855, 2010.CrossRefGoogle Scholar
  16. 16.
    Larsson, T., R. M. Aspden, and D. Heinegard. Effects of mechanical load on cartilage matrix biosynthesis in vitro. Matrix 11:388–394, 1991.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee, K. B., J. H. Hui, I. C. Song, L. Ardany, and E. H. Lee. Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model. Stem Cells 25:2964–2971, 2007.CrossRefPubMedGoogle Scholar
  18. 18.
    Li, W. J., R. Tuli, C. Okafor, A. Derfoul, K. G. Danielson, D. J. Hall, and R. S. Tuan. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599–609, 2005.CrossRefPubMedGoogle Scholar
  19. 19.
    Longobardi, L., L. O’Rear, S. Aakula, B. Johnstone, K. Shimer, A. Chytil, W. A. Horton, H. L. Moses, and A. Spagnoli. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J. Bone Miner. Res. 21:626–636, 2006.CrossRefPubMedGoogle Scholar
  20. 20.
    Lucchinetti, E., C. S. Adams, W. E. Horton, Jr, and P. A. Torzilli. Cartilage viability after repetitive loading: a preliminary report. Osteoarthritis Cartilage 10:71–81, 2002.CrossRefPubMedGoogle Scholar
  21. 21.
    Mouw, J. K., J. T. Connelly, C. G. Wilson, K. E. Michael, and M. E. Levenston. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 25:655–663, 2007.CrossRefPubMedGoogle Scholar
  22. 22.
    Noel, D., F. Djouad, and C. Jorgense. Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Curr. Opin. Investig. Drugs 3:1000–1004, 2002.PubMedGoogle Scholar
  23. 23.
    Noriega, S., T. Mamedov, J. A. Turner, and A. Subramanian. Intermittent applications of continuous ultrasound on the viability, proliferation, morphology, and matrix production of chondrocytes in 3D matrices. Tissue Eng. 13:611–618, 2007.CrossRefPubMedGoogle Scholar
  24. 24.
    Pelaez, D., C.-Y. Charles Huang, and H. S. Cheung. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev. 18:93–102, 2009.CrossRefPubMedGoogle Scholar
  25. 25.
    Quinn, T. M., A. J. Grodzinsky, M. D. Buschmann, Y. J. Kim, and E. B. Hunziker. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J. Cell Sci. 111:573–583, 1998.PubMedGoogle Scholar
  26. 26.
    Schnabel, M., S. Marlovits, G. Eckhoff, I. Fichtel, L. Gotzen, V. Vecsei, and J. Schlegel. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 10:62–70, 2002.CrossRefPubMedGoogle Scholar
  27. 27.
    Smith R. L., D. R. Carter and D. J. Schurman. Pressure and shear differentially alter human articular chondrocyte metabolism: a review. Clin. Orthop. Relat. Res. S89–S95, 2004.Google Scholar
  28. 28.
    Takahashi, I., G. H. Nuckolls, K. Takahashi, O. Tanaka, I. Semba, R. Dashner, L. Shum, and H. C. Slavkin. Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J. Cell Sci. 111(Pt 14):2067–2076, 1998.PubMedGoogle Scholar
  29. 29.
    Temenoff, J. S., and A. G. Mikos. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440, 2000.CrossRefPubMedGoogle Scholar
  30. 30.
    Thorpe, S. D., C. T. Buckley, T. Vinardell, F. J. O’Brien, V. A. Campbell, and D. J. Kelly. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann. Biomed. Eng. 38:2896–2909, 2010.CrossRefPubMedGoogle Scholar
  31. 31.
    Vinatier, C., D. Mrugala, C. Jorgensen, J. Guicheux, and D. Noel. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol. 27:307–314, 2009.CrossRefPubMedGoogle Scholar
  32. 32.
    Xie, Y., P. Hardouin, Z. Zhu, T. Tang, K. Dai, and J. Lu. Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size beta-tricalcium phosphate scaffold. Tissue Eng. 12:3535–3543, 2006.CrossRefPubMedGoogle Scholar
  33. 33.
    Yeatts, A. B., and J. P. Fisher. Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells. Tissue Eng. C Methods 17:337–348, 2011.CrossRefGoogle Scholar
  34. 34.
    Yeatts, A. B., C. N. Gordon, and J. P. Fisher. Formation of an aggregated alginate construct in a tubular perfusion system. Tissue Eng. C Methods 17:1171–1178, 2011.CrossRefGoogle Scholar
  35. 35.
    Yoon, D. M., S. Curtiss, A. H. Reddi, and J. P. Fisher. Addition of hyaluronic acid to alginate embedded chondrocytes interferes with insulin-like growth factor-1 signaling in vitro and in vivo. Tissue Eng. A 15:3449–3459, 2009.CrossRefGoogle Scholar
  36. 36.
    Yoon, D. M., E. C. Hawkins, S. Francke-Carroll, and J. P. Fisher. Effect of construct properties on encapsulated chondrocyte expression of insulin-like growth factor-1. Biomaterials 28:299–306, 2007.CrossRefPubMedGoogle Scholar
  37. 37.
    Yu, L., K. M. Ferlin, B. N. Nguyen, and J. P. Fisher. Tubular perfusion system for chondrocyte culture and superficial zone protein expression. J. Biomed. Mater. Res. A 103:1864–1874, 2015.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang, Z. Y., S. H. Teoh, W. S. Chong, T. T. Foo, Y. C. Chng, M. Choolani, and J. Chan. A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 30:2694–2704, 2009.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhao, F., P. Pathi, W. Grayson, Q. Xing, B. R. Locke, and T. Ma. Effects of oxygen transport on 3-d human mesenchymal stem cell metabolic activity in perfusion and static cultures: experiments and mathematical model. Biotechnol. Prog. 21:1269–1280, 2005.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Ting Guo
    • 1
  • Li Yu
    • 2
  • Casey G. Lim
    • 1
  • Addison S. Goodley
    • 1
  • Xuan Xiao
    • 3
  • Jesse K. Placone
    • 1
  • Kimberly M. Ferlin
    • 1
  • Bao-Ngoc B. Nguyen
    • 1
  • Adam H. Hsieh
    • 1
  • John P. Fisher
    • 1
    Email author
  1. 1.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA
  2. 2.Department of OrthopedicsZhongnan Hospital of Wuhan UniversityWuhanChina
  3. 3.Department of OphthalmologyRenming Hospital of Wuhan UniversityWuhanChina

Personalised recommendations