Annals of Biomedical Engineering

, Volume 44, Issue 2, pp 442–452 | Cite as

A Finite Element Method to Predict Adverse Events in Intracranial Stenting Using Microstents: In Vitro Verification and Patient Specific Case Study

  • Francesco Iannaccone
  • Matthieu De Beule
  • Sander De Bock
  • Imramsjah M. J. Van der Bom
  • Matthew J. Gounis
  • Ajay K. Wakhloo
  • Matthieu Boone
  • Benedict Verhegghe
  • Patrick Segers
Medical Stents: State of the Art and Future Directions

Abstract

Clinical studies have demonstrated the efficacy of stent supported coiling for intra-cranial aneurysm treatment. Despite encouraging outcomes, some matters are yet to be addressed. In particular closed stent designs are influenced by the delivery technique and may suffer from under-expansion, with the typical effect of “hugging” the inner curvature of the vessel which seems related to adverse events. In this study we propose a novel finite element (FE) environment to study potential failure able to reproduce the microcatheter “pull-back” delivery technique. We first verified our procedure with published in vitro data and then replicated the intervention on one patient treated with a 4.5 × 22 mm Enterprise microstent (Codman Neurovascular; Raynham MA, USA). Results showed good agreement with the in vitro test, catching both size and location of the malapposed area. A simulation of a 28 mm stent in the same geometry highlighted the impact of the delivery technique, which leads to larger area of malapposition. The patient specific simulation matched the global stent configuration and zones prone to malapposition shown on the clinical images with difference in tortuosity between actual and virtual treatment around 2.3%. We conclude that the presented FE strategy provides an accurate description of the stent mechanics and, after further in vivo validation and optimization, will be a tool to aid clinicians to anticipate the acute procedural outcome avoiding poor initial results.

Keywords

Intra-cranial Cerebral Aneurysm Stenting Hugging Apposition Microstent Incomplete 

Notes

Acknowledgments

The authors gratefully acknowledge the Research Foundation—Flanders (FWO Grant 3G065910) for the financial support of this research.

Conflict of interest

The authors have no financial disclosures. M. De Beule and B. Verhegghe are shareholders of FEops, an engineering consultancy spin-off from Ghent University, and have served as consultants for several medical device companies. A. K. Wakhloo reports grants from Philips Healthcare during the conduct of the study. He received personal fees from Stryker Neurovascular, Harvard University, Miami Baptist Health, and reports other finacial activities with InNeuroCo Inc and Lazarus Effect outside the submitted work. M. J. Gounis reports grants from Codman Neurovascular and Philips Healthcare, personal fees from Codman Neurovascular during the conduct of the study. He received grants from Wyss Institute, Fraunhofer Institute, Stryker Neurovascular, NIH, Tay Sachs Foundation, Covidien eV3 Neurovascular, Lazarus Effect and personal fees from Stryker Neurovascular, Harvard University and Surpass Medical Inc outside the submitted work. I. M. J. van der Bom is currently employed by Philips Healthcare, and reports financial activities with InNeuroCo Inc outside the submitted work.

References

  1. 1.
    Auricchio, F., M. Conti, M. De Beule, G. De Santis, and B. Verhegghe. Carotid artery stenting simulation: from patient-specific images to finite element analysis. Med. Eng. Phys. 33:281–289, 2011.CrossRefPubMedGoogle Scholar
  2. 2.
    Auricchio, F., M. Conti, S. Marconi, A. Reali, J. L. Tolenaar, and S. Trimarchi. Patient-specific aortic endografting simulation: from diagnosis to prediction. Comput. Biol. Med. 43:386–394, 2013.CrossRefPubMedGoogle Scholar
  3. 3.
    Benndorf, G., B. Claus, C. M. Strother, L. Chang, and R. P. Klucznik. Increased cell opening and prolapse of struts of a neuroform stent in curved vasculature: value of angiographic computed tomography: technical case report. Neurosurgery 58:ONS-E380, 2006.PubMedGoogle Scholar
  4. 4.
    Biondi, A., V. Janardhan, J. M. Katz, K. Salvaggio, H. A. Riina, and Y. P. Gobin. Neuroform stent-assisted coil embolization of wide-neck intracranial aneurysms: strategies in stent deployment and midterm follow-up. Neurosurgery 61:460–469, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    Bom, I. M. J., M. J. van der Gounis, L. Ding, A. L. Kühn, D. Goff, A. S. Puri, and A. K. Wakhloo. Target delineation for radiosurgery of a small brain arteriovenous malformation using high-resolution contrast-enhanced cone beam CT. J. NeuroInterventional Surg. 6:e34, 2014.CrossRefGoogle Scholar
  6. 6.
    Brooks, N. P., A. S. Turk, D. B. Niemann, B. Aagaard-Kienitz, K. Pulfer, and T. Cook. Frequency of thromboembolic events associated with endovascular aneurysm treatment: retrospective case series. J. Neurosurg. 108:1095–1100, 2008.CrossRefPubMedGoogle Scholar
  7. 7.
    Chalupnik, J. D., C. H. Daly, and H. C. Merchant. Material properties of cerebral blood vessels. Seattle: Department of Mechanical Engineering, University of Washington, 1971.Google Scholar
  8. 8.
    Conti, M., D. Van Loo, F. Auricchio, M. De Beule, G. De Santis, B. Verhegghe, S. Pirrelli, and A. Odero. Impact of carotid stent cell design on vessel scaffolding: a case study comparing experimental investigation and numerical simulations. J. Endovasc. Ther. Off. J. Int. Soc. Endovasc. Spec. 18:397–406, 2011.Google Scholar
  9. 9.
    De Bock, S., F. Iannaccone, G. De Santis, M. De Beule, P. Mortier, B. Verhegghe, and P. Segers. Our capricious vessels: the influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment. J. Biomech. 45:1353–1359, 2012.CrossRefPubMedGoogle Scholar
  10. 10.
    De Bock, S., F. Iannaccone, G. De Santis, M. De Beule, D. Van Loo, D. Devos, F. Vermassen, P. Segers, and B. Verhegghe. Virtual evaluation of stent graft deployment: a validated modeling and simulation study. J. Mech. Behav. Biomed. Mater. 13:129–139, 2012.CrossRefPubMedGoogle Scholar
  11. 11.
    Ebrahimi, N., B. Claus, C. Y. Lee, A. Biondi, and G. Benndorf. Stent conformity in curved vascular models with simulated aneurysm necks using flat-panel CT: an in vitro study. Am. J. Neuroradiol. 28:823, 2007.PubMedGoogle Scholar
  12. 12.
    Farb, A., A. P. Burke, F. D. Kolodgie, and R. Virmani. Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation 108:1701–1706, 2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Fargen, K. M., B. L. Hoh, B. G. Welch, G. L. Pride, G. Lanzino, A. S. Boulos, J. S. Carpenter, A. Rai, E. Veznedaroglu, and A. Ringer. Long-term results of enterprise stent-assisted coiling of cerebral aneurysms. Neurosurgery 71:239–244, 2012.CrossRefPubMedGoogle Scholar
  14. 14.
    Fiorella, D., F. C. Albuquerque, V. R. Deshmukh, and C. G. McDougall. Usefulness of the Neuroform stent for the treatment of cerebral aneurysms: results at initial (3-6-mo) follow-up. Neurosurgery 56:1191–1201, 2005; (discussion 1201–1202).CrossRefPubMedGoogle Scholar
  15. 15.
    Flood, T. F., I. M. van der Bom, L. Strittmatter, A. S. Puri, G. M. Hendricks, A. K. Wakhloo, and M. J. Gounis. Quantitative analysis of high-resolution, contrast-enhanced, cone-beam CT for the detection of intracranial in-stent hyperplasia. J. NeuroInterventional Surg. 7:118–125, 2015.CrossRefGoogle Scholar
  16. 16.
    Gong, P., and A. R. Pelton. Finite element analysis on nitinol medical applications. In: SMST-2003: Proceedings of The International Conference on Shape Memory and Superelastic Technologies, 5–8 May 2003, Asilomar Conference Center, Pacific Grove, California, edited by A. Pelton. ASM International, pp. 443–451, 2004.Google Scholar
  17. 17.
    Grewe, P. H., T. Deneke, A. Machraoui, J. Barmeyer, and K.-M. Müller. Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen. J. Am. Coll. Cardiol. 35:157–163, 2000.CrossRefPubMedGoogle Scholar
  18. 18.
    Grosland, N. M., K. H. Shivanna, V. A. Magnotta, N. A. Kallemeyn, N. A. DeVries, S. C. Tadepalli, and C. Lisle. IA-FEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development. Comput. Methods Programs Biomed. 94:96–107, 2009.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hall, G. J., and E. P. Kasper. Comparison of element technologies for modeling stent expansion. J. Biomech. Eng. 128:751–756, 2006.CrossRefPubMedGoogle Scholar
  20. 20.
    Heller, R., D. R. Calnan, M. Lanfranchi, N. Madan, and A. M. Malek. Incomplete stent apposition in Enterprise stent-mediated coiling of aneurysms: persistence over time and risk of delayed ischemic events: clinical article. J. Neurosurg. 118:1014–1022, 2013.CrossRefPubMedGoogle Scholar
  21. 21.
    Heller, R. S., and A. M. Malek. Parent vessel size and curvature strongly influence risk of incomplete stent apposition in enterprise intracranial aneurysm stent coiling. AJNR Am. J. Neuroradiol. 2011. doi: 10.3174/ajnr.A2584.PubMedGoogle Scholar
  22. 22.
    Heller, R. S., and A. M. Malek. Delivery technique plays an important role in determining vessel wall apposition of the Enterprise self-expanding intracranial stent. J. NeuroInterventional Surg. 3:340–343, 2011.CrossRefGoogle Scholar
  23. 23.
    Heller, R. S., W. R. Miele, D. D. Do-Dai, and A. M. Malek. Crescent sign on magnetic resonance angiography revealing incomplete stent apposition: correlation with diffusion-weighted changes in stent-mediated coil embolization of aneurysms. J. Neurosurg. 115:624–632, 2011.CrossRefPubMedGoogle Scholar
  24. 24.
    Iannaccone, F., S. De Bock, M. De Beule, F. Vermassen, I. Van Herzeele, P. Verdonck, P. Segers, and B. Verhegghe. Feasibility of a priori numerical assessment of plaque scaffolding after carotid artery stenting in clinical routine: proof of concept. Int. J. Artif. Organs 37:928–939, 2015.CrossRefGoogle Scholar
  25. 25.
    Ishibashi, T., Y. Murayama, T. Saguchi, M. Ebara, K. Irie, H. Takao, and T. Abe. Thromboembolic events during endovascular coil embolization of cerebral aneurysms. Interv. Neuroradiol. 12:112–116, 2006.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Kaladji, A., A. Dumenil, M. Castro, A. Cardon, J.-P. Becquemin, B. Bou-Saïd, A. Lucas, and P. Haigron. Prediction of deformations during endovascular aortic aneurysm repair using finite element simulation. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 37:142–149, 2013.CrossRefGoogle Scholar
  27. 27.
    Kelly, M. E., Rd Turner, S. I. Moskowitz, V. Gonugunta, M. S. Hussain, and D. Fiorella. Delayed migration of a self-expanding intracranial microstent. Am. J. Neuroradiol. 29:1959–1960, 2008.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim, M., E. I. Levy, H. Meng, and L. N. Hopkins. Quantification of hemodynamic changes induced by virtual placement of multiple stents across a wide-necked basilar trunk aneurysm. Neurosurgery 61:1305, 2007.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Kojima, M., K. Irie, T. Fukuda, F. Arai, Y. Hirose, and M. Negoro. The study of flow diversion effects on aneurysm using multiple enterprise stents and two flow diverters. Asian J. Neurosurg. 7:159, 2012.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Krischek, Ö., E. Miloslavski, S. Fischer, S. Shrivastava, and H. Henkes. A comparison of functional and physical properties of self-expanding intracranial stents [Neuroform3, Wingspan, Solitaire, Leo (+), Enterprise]. Minim. Invasive Neurosurg. 54:21–28, 2011.CrossRefPubMedGoogle Scholar
  31. 31.
    Lanzino, G., A. A. Rabinstein, and R. D. Brown Jr. Treatment of carotid artery stenosis: medical therapy, surgery, or stenting? In: Mayo Clinic Proceedings, vol. 84, pp. 362–368, 2009.Google Scholar
  32. 32.
    Larrabide, I., M. Kim, L. Augsburger, M. C. Villa-Uriol, D. Rüfenacht, and A. F. Frangi. Fast virtual deployment of self-expandable stents: method and in vitro evaluation for intracranial aneurysmal stenting. Med. Image Anal. 16:721–730, 2012.CrossRefPubMedGoogle Scholar
  33. 33.
    Lopes, D., and S. Sani. Histological postmortem study of an internal carotid artery aneurysm treated with the Neuroform stent. Neurosurgery 56:E416, 2005.CrossRefPubMedGoogle Scholar
  34. 34.
    Ma, D., G. F. Dargush, S. K. Natarajan, E. I. Levy, A. H. Siddiqui, and H. Meng. Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms. J. Biomech. 45:2256–2263, 2012.CrossRefPubMedGoogle Scholar
  35. 35.
    Ma, D., T. M. Dumont, H. Kosukegawa, M. Ohta, X. Yang, A. H. Siddiqui, and H. Meng. High fidelity virtual stenting (HiFiVS) for intracranial aneurysm flow diversion: in vitro and in silico. Ann. Biomed. Eng. 41:2143–2156, 2013.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Molyneux, A. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 360:1267–1274, 2002.CrossRefPubMedGoogle Scholar
  37. 37.
    Monson, K. L., N. M. Barbaro, and G. T. Manley. Biaxial response of passive human cerebral arteries. Ann. Biomed. Eng. 36:2028–2041, 2008.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Morlacchi, S., S. G. Colleoni, R. Cárdenes, C. Chiastra, J. L. Diez, I. Larrabide, and F. Migliavacca. Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med. Eng. Phys. 35:1272–1281, 2013.CrossRefPubMedGoogle Scholar
  39. 39.
    Mortier, P., M. De Beule, P. Segers, P. Verdonck, and B. Verhegghe. Virtual bench testing of new generation coronary stents. EuroIntervention J. Eur. Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 7:369–376, 2011.Google Scholar
  40. 40.
    Patel, N. V., M. J. Gounis, A. K. Wakhloo, N. Noordhoek, J. Blijd, D. Babic, D. Takhtani, S.-K. Lee, and A. Norbash. Contrast-enhanced angiographic cone-beam CT of cerebrovascular stents: experimental optimization and clinical application. AJNR Am. J. Neuroradiol. 32:137–144, 2011.PubMedGoogle Scholar
  41. 41.
    Peach, T. W., M. Ngoepe, K. Spranger, D. Zajarias-Fainsod, and Y. Ventikos. Personalizing flow-diverter intervention for cerebral aneurysms: from computational hemodynamics to biochemical modeling. Int. J. Numer. Methods Biomed. Eng. 30:1387–1407, 2014.CrossRefGoogle Scholar
  42. 42.
    Perrin, D., P. Badel, L. Orgéas, C. Geindreau, A. Dumenil, J.-N. Albertini, and S. Avril. Patient-specific numerical simulation of stent-graft deployment: validation on three clinical cases. J. Biomech. 48:1868–1875, 2015.CrossRefPubMedGoogle Scholar
  43. 43.
    Pierot, L., L. Spelle, and F. Vitry. Immediate clinical outcome of patients harboring unruptured intracranial aneurysms treated by endovascular approach results of the ATENA study. Stroke 39:2497–2504, 2008.CrossRefPubMedGoogle Scholar
  44. 44.
    Piotin, M., R. Blanc, L. Spelle, C. Mounayer, R. Piantino, P. J. Schmidt, and J. Moret. Stent-assisted coiling of intracranial aneurysms clinical and angiographic results in 216 consecutive aneurysms. Stroke 41:110–115, 2010.CrossRefPubMedGoogle Scholar
  45. 45.
    Prandtl, L., H. Oertel, M. Böhle, D. Etling, U. Müller, K. R. Sreenivasan, U. Riedel, and J. Warnatz. Prandtl’s Essentials of Fluid Mechanics. New York: Springer, 2004.Google Scholar
  46. 46.
    Sedat, J., Y. Chau, L. Mondot, J. Vargas, J. Szapiro, and M. Lonjon. Endovascular occlusion of intracranial wide-necked aneurysms with stenting (Neuroform) and coiling: mid-term and long-term results. Neuroradiology 51:401–409, 2009.CrossRefPubMedGoogle Scholar
  47. 47.
    Siqueira, D. A., A. A. Abizaid, R. de Costa, F. Feres, L. A. Mattos, R. Staico, A. M. Spiotta, A. A. Abizaid, L. F. Tanajura, A. Chaves, M. Centemero, A. G. M. R. Sousa, and J. E. M. R. Sousa. Late incomplete apposition after drug-eluting stent implantation: incidence and potential for adverse clinical outcomes. Eur. Heart J. 28:1304–1309, 2007.CrossRefPubMedGoogle Scholar
  48. 48.
    Spiotta, A. M., A. M. Wheeler, S. Smithason, F. Hui, and S. Moskowitz. Comparison of techniques for stent assisted coil embolization of aneurysms. J. Neurointerventional Surg. 4:339–344, 2012.CrossRefGoogle Scholar
  49. 49.
    Thomas, J. B., L. Antiga, S. L. Che, J. S. Milner, D. A. Hangan Steinman, J. D. Spence, B. K. Rutt, and D. A. Steinman. Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis. Stroke 36:2450, 2005.CrossRefPubMedGoogle Scholar
  50. 50.
    van der Marel, K., M. Gounis, R. King, A. Wakhloo, and A. Puri. P-001 high-resolution optical and angiographic ct imaging of flow-diverter stents for assessment of vessel wall apposition. J. Neurointerventional Surg. 6(Suppl 1:):A21, 2014.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Francesco Iannaccone
    • 1
    • 2
  • Matthieu De Beule
    • 1
    • 3
  • Sander De Bock
    • 1
  • Imramsjah M. J. Van der Bom
    • 4
  • Matthew J. Gounis
    • 5
  • Ajay K. Wakhloo
    • 5
  • Matthieu Boone
    • 6
  • Benedict Verhegghe
    • 1
    • 3
  • Patrick Segers
    • 1
  1. 1.IbiTech-bioMMeda, Department of Electronics and Information Systems, iMinds Medical ITGhent UniversityGhentBelgium
  2. 2.Department of Biomedical Engineering, ThoraxcenterErasmus University Medical CenterRotterdamThe Netherlands
  3. 3.FEops bvbaGhentBelgium
  4. 4.Image-Guided Therapy SystemsPhilips HealthcareAndoverUSA
  5. 5.Department of Radiology, New England Center for Stroke ResearchUniversity of Massachusetts Medical SchoolWorcesterUSA
  6. 6.Department of Physics and AstronomyGhent University Center for X-ray TomographyGhentBelgium

Personalised recommendations