Annals of Biomedical Engineering

, Volume 44, Issue 7, pp 2261–2272 | Cite as

Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients

  • Maggie A. Ostrowski
  • Eva Y. Huang
  • Vinay N. Surya
  • Charlotte Poplawski
  • Joseph M. Barakat
  • Gigi L. Lin
  • Gerald G. Fuller
  • Alexander R. Dunn
Article

Abstract

Endothelial cells (ECs) line the interior of blood and lymphatic vessels and experience spatially varying wall shear stress (WSS) as an intrinsic part of their physiological function. How ECs, and mammalian cells generally, sense spatially varying WSS remains poorly understood, due in part to a lack of convenient tools for exposing cells to spatially varying flow patterns. We built a multiplexed device, termed a 6-well impinging flow chamber, that imparts controlled WSS gradients to a six-well tissue culture plate. Using this device, we investigated the migratory response of lymphatic microvascular ECs, umbilical vein ECs, primary fibroblasts, and epithelial cells to WSS gradients on hours to days timescales. We observed that lymphatic microvascular ECs migrate upstream, against the direction of flow, a response that was unique among all the cells types investigated here. Time-lapse, live cell imaging revealed that the microtubule organizing center relocated to the upstream side of the nucleus in response to the applied WSS gradient. To further demonstrate the utility of our device, we screened for the involvement of canonical signaling pathways in mediating this upstream migratory response. These data highlight the importance of WSS magnitude and WSS spatial gradients in dictating the cellular response to fluid flow.

Keywords

Mechanotransduction Cell migration Vascular biology Fluid mechanics 

References

  1. 1.
    Allee, W. C. An experimental analysis of the relation between physiological states and rheotaxis in isopoda. J. Exp. Zool. 13:269–344, 1912.CrossRefGoogle Scholar
  2. 2.
    Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91(1):327–387, 2011.CrossRefPubMedGoogle Scholar
  3. 3.
    Chiu, J. J., D. L. Wang, S. Chien, R. Skalak, and S. Usami. Effects of disturbed flow on endothelial cells. J. Biomech. Eng. 120(1):2–8, 1998.CrossRefPubMedGoogle Scholar
  4. 4.
    Chung, T. H., S. M. Wang, Y. C. Chang, Y. L. Chen, and J. C. Wu. 18beta-glycyrrhetinic acid promotes src interaction with connexin43 in rat cardiomyocytes. J. Cell. Biochem. 100(3):653–664, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    Coan, D. E., A. R. Wechezak, R. F. Viggers, and L. R. Sauvage. Effect of shear stress upon localization of the Golgi apparatus and microtubule organizing center in isolated cultured endothelial cells. J. Cell Sci. 104(Pt 4):1145–1153, 1993.PubMedGoogle Scholar
  6. 6.
    DePaola, N., P. F. Davies, W. F. Pritchard, Jr, L. Florez, N. Harbeck, and D. C. Polacek. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl. Acad. Sci. USA 96(6):3154–3159, 1999.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Depaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear-stress gradients. Arterioscler. Thromb. 12(11):1254–1257, 1992.CrossRefPubMedGoogle Scholar
  8. 8.
    Depaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear-stress gradients (Vol 12, Pg 1254–1257, 1992). Arterioscler. Thromb. 13(3):465–465, 1993.Google Scholar
  9. 9.
    Dolan, J. M., H. Meng, S. Singh, R. Paluch, and J. Kolega. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann. Biomed. Eng. 39(6):1620–1631, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Francis, R., X. Xu, H. Park, C. J. Wei, S. Chang, B. Chatterjee, and C. Lo. Connexin43 modulates cell polarity and directional cell migration by regulating microtubule dynamics. PLoS One 6(10):e26379, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Guan, X., S. Wilson, K. K. Schlender, and R. J. Ruch. Gap-junction disassembly and connexin 43 dephosphorylation induced by 18 beta-glycyrrhetinic acid. Mol. Carcinog. 16(3):157–164, 1996.CrossRefPubMedGoogle Scholar
  12. 12.
    Hove, J. R., R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177, 2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Ilic, D., Y. Furuta, S. Kanazawa, N. Takeda, K. Sobue, N. Nakatsuji, S. Nomura, J. Fujimoto, M. Okada, and T. Yamamoto. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377(6549):539–544, 1995.CrossRefPubMedGoogle Scholar
  14. 14.
    Koo, M. A., J. K. Kang, M. H. Lee, H. J. Seo, B. J. Kwon, K. E. You, M. S. Kim, D. Kim and J. C. Park. Stimulated migration and penetration of vascular endothelial cells into poly (l-lactic acid) scaffolds under flow conditions. Biomater. Res. 18(7), 2014.Google Scholar
  15. 15.
    LaMack, J. A., and M. H. Friedman. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am. J. Physiol.-Heart C 293(5):H2853–H2859, 2007.CrossRefGoogle Scholar
  16. 16.
    Lucitti, J. L., E. A. Jones, C. Huang, J. Chen, S. E. Fraser, and M. E. Dickinson. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134(18):3317–3326, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Masuda, M., and K. Fujiwara. The biased lamellipodium development and microtubule organizing center position in vascular endothelial cells migrating under the influence of fluid flow. Biol. Cell 77(3):237–245, 1993.CrossRefPubMedGoogle Scholar
  18. 18.
    Mitra, S. K., D. A. Hanson, and D. D. Schlaepfer. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6(1):56–68, 2005.CrossRefPubMedGoogle Scholar
  19. 19.
    Mohamied, Y., E. M. Rowland, E. L. Bailey, S. J. Sherwin, M. A. Schwartz, and P. D. Weinberg. Change of direction in the biomechanics of atherosclerosis. Ann. Biomed. Eng. 43:16–25, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mohan, S., N. Mohan, A. J. Valente, and E. A. Sprague. Regulation of low shear flow-induced HAEC VCAM-1 expression and monocyte adhesion. Am. J. Physiol. 276(5 Pt 1):C1100–C1107, 1999.PubMedGoogle Scholar
  21. 21.
    Muthard, R. W., and S. L. Diamond. Side view thrombosis microfluidic device with controllable wall shear rate and transthrombus pressure gradient. Lab Chip 13(10):1883–1891, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ostrowski, M. A., N. F. Huang, T. W. Walker, T. Verwijlen, C. Poplawski, A. S. Khoo, J. P. Cooke, G. G. Fuller, and A. R. Dunn. Microvascular endothelial cells migrate upstream and align against the shear stress field created by impinging flow. Biophys. J. 106(2):366–374, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Palazzo, A. F., C. H. Eng, D. D. Schlaepfer, E. E. Marcantonio, and G. G. Gundersen. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303(5659):836–839, 2004.CrossRefPubMedGoogle Scholar
  24. 24.
    Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254, 2005.CrossRefPubMedGoogle Scholar
  25. 25.
    Polacheck, W. J., A. E. German, A. Mammoto, D. E. Ingber, and R. D. Kamm. Mechanotransduction of fluid stresses governs 3D cell migration. Proc. Natl. Acad. Sci. USA 111(7):2447–2452, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95(12):6044–6051, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Remuzzi, A., C. F. Dewey, Jr, P. F. Davies, and M. A. Gimbrone, Jr. Orientation of endothelial cells in shear fields in vitro. Biorheology 21(4):617–630, 1984.PubMedGoogle Scholar
  28. 28.
    Rogers, K. A., N. H. McKee, and V. I. Kalnins. Preferential orientation of centrioles toward the heart in endothelial cells of major blood vessels is reestablished after reversal of a segment. Proc. Natl. Acad. Sci. USA 82(10):3272–3276, 1985.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rouleau, L., M. Farcas, J. C. Tardif, R. Mongrain, and R. L. Leask. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients. J. Biomech. Eng.-T Asme 8:081013, 2010.CrossRefGoogle Scholar
  30. 30.
    Sakamoto, N., N. Saito, X. Han, T. Ohashi, and M. Sato. Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow. Biochem. Biophys. Res. Commun. 395(2):264–269, 2010.CrossRefPubMedGoogle Scholar
  31. 31.
    Sato, M., N. Saito, N. Sakamoto, and T. Ohashi. High wall shear stress gradient suppress morphological responses of endothelial cells to fluid flow. IFMBE Proc. 25:312–313, 2010.Google Scholar
  32. 32.
    Schedin, P., and P. J. Keely. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3(1):a003228, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7):676–682, 2012.CrossRefPubMedGoogle Scholar
  34. 34.
    Szymanski, M. P., E. Metaxa, H. Meng, and J. Kolega. Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Ann. Biomed. Eng. 36(10):1681–1689, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Theveneau, E., L. Marchant, S. Kuriyama, M. Gull, B. Moepps, M. Parsons, and R. Mayor. Collective chemotaxis requires contact-dependent cell polarity. Dev. Cell 19(1):39–53, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ting, L. H., J. R. Jahn, J. I. Jung, B. R. Shuman, S. Feghhi, S. J. Han, M. L. Rodriguez, and N. J. Sniadecki. Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. Am. J. Physiol. Heart Circ. Physiol. 302(11):H2220–H2229, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tomar, A., and D. D. Schlaepfer. Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr. Opin. Cell Biol. 21(5):676–683, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tsou, J. K., R. M. Gower, H. J. Ting, U. Y. Schaff, M. F. Insana, A. G. Passerini, and S. I. Simon. Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation 15(4):311–323, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431, 2005.CrossRefPubMedGoogle Scholar
  40. 40.
    Weber, G. F., M. A. Bjerke, and D. W. DeSimone. A mechanoresponsive cadherin–keratin complex directs polarized protrusive behavior and collective cell migration. Dev. Cell 22(1):104–115, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yoshikawa, N., H. Ariyoshi, Y. Aono, M. Sakon, T. Kawasaki, and M. Monden. Gradients in cytoplasmic calcium concentration ([Ca 2+] i) in migrating human umbilical vein endothelial cells (HUVECs) stimulated by shear-stress. Life Sci. 65(24):2643–2651, 1999.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Maggie A. Ostrowski
    • 1
  • Eva Y. Huang
    • 1
  • Vinay N. Surya
    • 1
  • Charlotte Poplawski
    • 1
  • Joseph M. Barakat
    • 1
  • Gigi L. Lin
    • 1
  • Gerald G. Fuller
    • 1
  • Alexander R. Dunn
    • 1
    • 2
  1. 1.Department of Chemical EngineeringStanford UniversityStanfordUSA
  2. 2.Stanford Cardiovascular InstituteStanford University School of MedicineStanfordUSA

Personalised recommendations