Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 7, pp 2313–2326 | Cite as

Novel Balloon Surface Scanning Device for Intraoperative Breast Endomicroscopy

  • Siyang Zuo
  • Michael Hughes
  • Guang-Zhong Yang
Article

Abstract

Recent advances in fluorescence confocal endomicroscopy have allowed real-time identification of residual tumour cells on the walls of the cavity left by breast conserving surgery. However, it is difficult to systematically survey the surgical site because of the small imaging field-of-view of these probes, compounded by tissue deformation and inconsistent probe-tissue contact when operated manually. Therefore, a new robotized scanning device is required for controlled, large area scanning and mosaicing. This paper presents a robotic scanning probe with an inflatable balloon, providing stable cavity scanning over undulating surfaces. It has a compact design, with an outer diameter of 4 mm and a working channel of 2.2 mm, suitable for a leached flexible fibre bundle endomicroscope probe. With the probe inserted, the tip positioning accuracy measured to be 0.26 mm for bending and 0.17 mm for rotational motions. Large area scanning was achieved (25–35 mm2) and the experimental results demonstrate the potential clinical value of the device for intraoperative cavity tumour margin evaluation.

Keywords

Breast conserving surgery Confocal endomicroscopy Image mosaicing Mechanical design Surgical robot 

Notes

Acknowledgments

The authors would like to thank Dr. Daniel R Leff and Vyas Khushi for providing the breast tissue and discussion for ex vivo experiments, and to Petros Giataganas for discussions with mechanical design. This work was supported by EPSRC grant EP/IO27769/1: SMART Endomicroscopy.

Conflict of interest

None.

References

  1. 1.
    Abeytunge, S., Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, et al. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue. J. Biomed. Opt. 18:061227, 2013.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Chang, T. P., D. R. Leff, S. Shousha, D. J. Hadjiminas, R. Ramakrishnan, M. Gudi, R. Al-Mufti, M. R. Hughes, A. Darzi, and G. Z. Yang. Imaging of breast cancer morphology using probe-based confocal laser endomicroscopy: towards a novel imaging tool for real-time intra-operative cavity scanning. Eur. J. Surg. Oncol. 39(11):S80, 2013.CrossRefGoogle Scholar
  3. 3.
    Dario, P., M. Carrozza, C. Marcacci, M. Attanasio, B. Magnami, O. Tonet, and G. Megali. A novel mechatronic tool for computer-assisted arthroscopy. IEEE Trans. Inform. Technol. Biomed. 4(1):15–28, 2000.CrossRefGoogle Scholar
  4. 4.
    Erden, M. S., B. Rosa, N. Boularot, B. Gayet, G. Morel, and J. Szewczyk. Conic-Spiraleur: a miniature distal scanner for confocal microlaparoscope. IEEE/ASME Trans. Mechatron. 19(6):1786–1798, 2014.CrossRefGoogle Scholar
  5. 5.
    Ferlay, J., et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136:E359–E386, 2015.CrossRefPubMedGoogle Scholar
  6. 6.
    Gmitro, A. F., and D. Aziz. Confocal microscopy through a fiber-optic imaging bundle. Opt. Lett. 18:565–567, 1993.CrossRefPubMedGoogle Scholar
  7. 7.
    Jabbour, J. M., M. A. Saldua, J. N. Bixler, and K. C. Maitland. Confocal endomicroscopy instrumentation and medical applications. Ann. Biomed. Eng. 40:378–397, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jeevan, R., D. Cromwell, M. Trivella, G. Lawrence, O. Kearins, J. Pereira, C. Sheppard, C. M. Caddy, and J. H. van der Meulen. Reoperation rates after breast conserving surgery for breast cancer among women in England: retrospective study of hospital episode statistics. BMJ 345:e4505, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kreike, B., A. A. Hart, T. van de Velde, J. Borger, H. Peterse, E. Rutgers, H. Bartelink, and M. J. van de Vijver. Continuing risk of ipsilateral breast relapse after breast-conserving therapy at long-term follow-up. Int. J. Radiat. Oncol. Biol. Phys. 71:1014–1021, 2008.CrossRefPubMedGoogle Scholar
  10. 10.
    Laemmel, E., M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Le Vicaut. Fibered confocal fluorescence microscopy (Cell-viZio™) facilitates extended imaging in the field of microcirculation. J. Vasc. Res. 41(5):400–411, 2004.CrossRefPubMedGoogle Scholar
  11. 11.
    Le Goualher, G., A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache. Towards optical biopsies with an integrated fibered confocal fluorescence microscope. Part II. In: Proceedings of the 7th International Conference on Medical Image Computing and Computer-Assisted Intervention, Saint-Malo, France, pp. 761–768, 2004.Google Scholar
  12. 12.
    Mahé, J., T. Vercauteren, B. Rosa, and J. Dauguet. A Viterbi approach to topology inference for large scale endomicroscopy video mosaicing. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2013, pp. 404–411, 2005.Google Scholar
  13. 13.
    Newton, R. C., S. V. Kemp, P. Shah, D. Elson, A. Darzi, K. Shibuya, S. Mulgrew, and G. Z. Yang. Progress toward optical biopsy: bringing the microscope to the patient. Lung 189:111–119, 2011.CrossRefPubMedGoogle Scholar
  14. 14.
    Newton, R. C., S. V. Kemp, G. Z. Yang, A. Darzi, M. N. Sheppard, and P. L. Shah. Tracheobronchial amyloidosis and confocal endomicroscopy. Respiration 82(2):209–211, 2011.CrossRefPubMedGoogle Scholar
  15. 15.
    Newton, R. C., S. V. Kemp, G. Z. Yang, D. Ellson, A. Darzi, and P. Shah. Imaging parenchymal lung diseases with confocal endomicroscopy. Respir. Med. 106(1):127–137, 2012.CrossRefPubMedGoogle Scholar
  16. 16.
    Newton, R. C., S. Kemp, Z. Zoumot, G. Z. Yang, A. Darzi, and P. L. Shah. An unusual case of haemoptysis. Thorax 65(309):353, 2010.Google Scholar
  17. 17.
    Peirs, J., D. Reynaerts, and H. Van Brussel. A miniature manipulator for integration in a self-propelling endoscope. Sensors Actuators A 34:343–349, 2001.CrossRefGoogle Scholar
  18. 18.
    Pohl, H., T. Rosch, M. Vieth, M. Koch, V. Becker, M. Anders, A. C. Khalifa, and A. Meining. Miniprobe confocal laser microscopy for the detection of invisible neoplasia in patients with Barrett’s oesophagus. Gut 57:1648–1653, 2008.CrossRefPubMedGoogle Scholar
  19. 19.
    Rosa, B., B. Herman, J. Szewczyk, B. Gayet, and G. Morel. Laparoscopic optical biopsies: in vivo robotized mosaicing with probe-based confocal endomicroscopy. In Proceedings of IROS’2011, an Francisco, California, pp. 25–30, 2011.Google Scholar
  20. 20.
    Schwartz, G. F., U. Veronesi, K. B. Clough, et al. Consensus conference on breast conservation. J. Am. Coll. Surg. 203:198–207, 2006.CrossRefPubMedGoogle Scholar
  21. 21.
    Shang, J., D. Noonan, C. Payne, J. Clark, M. Sodergren, A. Darzi, and G.Z. Yang. An articulated universal joint based flexible access robot for minimally invasive surgery. In: Proceedings of the IEEE International Conference on Robotics Automation, pp. 1147–1152, 2011.Google Scholar
  22. 22.
    Singletary, S. E. Surgical margins in patients with early-stage breast cancer treated with breast conservation therapy. Am. J. Surg. 184:383–393, 2002.CrossRefPubMedGoogle Scholar
  23. 23.
    Tilli, M. T., M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth. Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy. J. Biomed. Opt. 12:051901, 2007.CrossRefPubMedGoogle Scholar
  24. 24.
    Vercauteren, T., A. Meining, F. Lacombe, and A. Perchant. Real time autonomous video image registration for endomicroscopy: fighting the compromises. Biomed. Opt. (BiOS) 2008:68610C, 2008.Google Scholar
  25. 25.
    Vercauteren, T., A. Perchant, G. Malandain, X. Pennec, and N. Ayache. Robust mosaicing with correction of motion distortions and tissue deformation for in vivo fibered microscopy. Med. Image Anal. 10(5):673–692, 2006.CrossRefPubMedGoogle Scholar
  26. 26.
    Vercauteren, T., A. Perchant, X. Pennec, and N. Ayache. Mosaicing of confocal microscopic in vivo soft tissue video sequences. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2005, pp. 753–760, 2005.Google Scholar
  27. 27.
    Xu, M., and L. V. Wang. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77:041101, 2006.CrossRefGoogle Scholar
  28. 28.
    Yamashita, H., D. Kim, N. Hata, T. Dohi. Multi-slider linkage mechanism for endoscopic forceps manipulator. In: Proceedings of the IEEE/RSJ International Conference on Intelligence Robots System, pp. 2577–2582, 2003.Google Scholar
  29. 29.
    Yamashita, H., K. Matsumiya, K. Masamune, H. Liao, T. Chiba, and T. Dohi. Miniature bending manipulator for fetoscopic intrauterine laser therapy in twin-to-twin transfusion syndrome. Surg. Endosc. 22(2):430–435, 2007.CrossRefGoogle Scholar
  30. 30.
    Zuo, S., M. Hughes, C. Seneci, T. P. Chang, and G. Z. Yang. Towards intraoperative breast endomicroscopy with a novel surface scanning device. IEEE Trans. Biomed. Eng. 2015. doi: 10.1109/TBME.2015.2455597.Google Scholar
  31. 31.
    Zuo, S., K. Iijima, T. Tokumiya, and K. Masamune. Variable stiffness outer sheath with “Dragon skin” structure and negative pneumatic shape-locking. Int. J. Comput. Assist. Radiol. Surg. 9(5):857–865, 2014.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  1. 1.Hamlyn Centre for Robotic SurgeryImperial College LondonLondonUK

Personalised recommendations