Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 3, pp 773–781 | Cite as

X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

  • Alyssa A. Appel
  • Jeffery C. Larson
  • Bin Jiang
  • Zhong Zhong
  • Mark A. Anastasio
  • Eric M. BreyEmail author
Nondestructive Characterization of Biomaterials for Tissue Engineering and Drug Delivery

Abstract

Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.

Keywords

X-ray phase contrast Imaging Hydrogels Tissue engineering Micro-computed tomography 

Notes

Acknowledgments

The authors would like to thank Banu Akar and Frederick Doe for staining the samples. This work was supported by grants from the Veterans Administration, National Science Foundation (IIS-1125412, CBET-1263994) and the National Institute of Health (R01EB009715).

Supplementary material

Supplementary material 1 (WMV 2593 kb)

References

  1. 1.
    Appel, A. A., M. A. Anastasio, J. C. Larson, and E. M. Brey. Imaging challenges in biomaterials and tissue engineering. Biomaterials 34:6615–6630, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Appel, A. A., J. C. Larson, A. B. Garson, 3rd, H. Guan, Z. Zhong, B. N. Nguyen, J. P. Fisher, M. A. Anastasio, and E. M. Brey. X-ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues. Biotechnol. Bioeng. 112:612–620, 2015.CrossRefPubMedGoogle Scholar
  3. 3.
    Appel, A. A., J. C. Larson, S. Somo, Z. Zhong, P. P. Spicer, F. K. Kasper, A. B. Garson, 3rd, A. M. Zysk, A. G. Mikos, M. A. Anastasio, and E. M. Brey. Imaging of poly(alpha-hydroxy-ester) scaffolds with X-ray phase-contrast microcomputed tomography. Tissue Eng. Part C 18:859–865, 2012.CrossRefGoogle Scholar
  4. 4.
    Arfelli, F., M. Assante, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. DallaPalma, M. Di Michiel, R. Longo, A. Olivo, S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky, G. Tromba, A. Vacchi, E. Vallazza, and F. Zanconati. Low-dose phase contrast x-ray medical imaging. Phys. Med. Biol. 43:2845–2852, 1998.CrossRefPubMedGoogle Scholar
  5. 5.
    Artzi, N., N. Oliva, C. Puron, S. Shitreet, S. Artzi, A. Bon Ramos, A. Groothuis, G. Sahagian, and E. R. Edelman. In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging. Nat. Mater. 10:704–709, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bal, U., V. Andresen, B. Baggett, and U. Utzinger. Intravital confocal and two-photon imaging of dual-color cells and extracellular matrix mimics. Microsc. Microanal. 19:201–212, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bech, M., A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer. In-vivo dark-field and phase-contrast x-ray imaging. Scientific Rep. 3:3209, 2013.Google Scholar
  8. 8.
    Brankov, J. G., M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio. A computed tomography implementation of multiple-image radiography. Med. Phys. 33:278, 2006.CrossRefPubMedGoogle Scholar
  9. 9.
    Brey, E. M., A. Appel, Y. C. Chiu, Z. Zhong, M. H. Cheng, H. Engel, and M. A. Anastasio. X-ray imaging of poly(ethylene glycol) hydrogels without contrast agents. Tissue Eng. Part C 16:1597–1600, 2010.CrossRefGoogle Scholar
  10. 10.
    Cedola, A., G. Campi, D. Pelliccia, I. Bukreeva, M. Fratini, M. Burghammer, L. Rigon, F. Arfelli, R. Chang, D. Chen, N. Dreossi, S. Sodini, G. Mohammadi, R. Tromba, R. Cancedda, and M. Mastrogiacomo. Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography. Phys. Med. Biol. 59:189–201, 2014.CrossRefPubMedGoogle Scholar
  11. 11.
    Chan, K. W., G. Liu, X. Song, H. Kim, T. Yu, D. R. Arifin, A. A. Gilad, J. Hanes, P. Walczak, P. C. van Zijl, J. W. Bulte, and M. T. McMahon. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nat. Mater. 12:268–275, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chan, K. W., G. Liu, P. C. van Zijl, J. W. Bulte, and M. T. McMahon. Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. Biomaterials 35:7811–7818, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chiu, Y. C., E. M. Brey, and V. H. Perez-Luna. A study of the intrinsic autofluorescence of poly (ethylene glycol)-co-(l-lactic acid) diacrylate. J. Fluoresc. 22:907–913, 2012.CrossRefPubMedGoogle Scholar
  14. 14.
    Chiu, Y. C., M. H. Cheng, H. Engel, S. W. Kao, J. C. Larson, S. Gupta, and E. M. Brey. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32:6045–6051, 2011.CrossRefPubMedGoogle Scholar
  15. 15.
    Chou, C.-Y., M. A. Anastasio, J. G. Brankov, M. N. Wernick, E. M. Brey, D. M. Connor, and Z. Zhong. An extended diffraction-enhanced imaging method for implementing multiple-image radiography. Phys. Med. Biol. 52:1923–1945, 2007.CrossRefPubMedGoogle Scholar
  16. 16.
    Chung, E., S. Y. Nam, L. M. Ricles, S. Emelianov, and L. Suggs. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications. Int. J. Nanomed. 8:325–336, 2013.CrossRefGoogle Scholar
  17. 17.
    Edmunds, K. J., and P. Gargiulo. Imaging approaches in functional assessment of implantable myogenic biomaterials and engineered muscle tissue. Eur. J. Transl. Myol. Basic Appl. Myol. 25:63–76, 2015.CrossRefGoogle Scholar
  18. 18.
    Francis-Sedlak, M. E., S. Uriel, J. C. Larson, H. P. Greisler, D. C. Venerus, and E. M. Brey. Characterization of type I collagen gels modified by glycation. Biomaterials 30:1851–1856, 2009.CrossRefPubMedGoogle Scholar
  19. 19.
    Guan, H., Q. Xu, A. Garson and M. A. Anastasio. Depth resolution properties of in-line X-ray phase-contrast tomosynthesis. 9033: 90330H, 2014.Google Scholar
  20. 20.
    Guan, H., Q. Xu, A. B. Garson, 3rd, and M. A. Anastasio. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization. Phys. Med. Biol. 60:N151–165, 2015.CrossRefPubMedGoogle Scholar
  21. 21.
    Gudur, M. S., R. R. Rao, A. W. Peterson, D. J. Caldwell, J. P. Stegemann, and C. X. Deng. Noninvasive quantification of in vitro osteoblastic differentiation in 3D engineered tissue constructs using spectral ultrasound imaging. PLoS One 9:e85749, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Izadifar, Z., L. D. Chapman, and X. Chen. Computed tomography diffraction-enhanced imaging for in situ visualization of tissue scaffolds implanted in cartilage. Tissue En. Part C 20:140–148, 2014.CrossRefGoogle Scholar
  23. 23.
    Jiang, B., T. M. Waller, J. C. Larson, A. A. Appel, and E. M. Brey. Fibrin-loaded porous poly (ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation. Tissue Eng. Part A 19:224–234, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Karfeld-Sulzer, L. S., E. A. Waters, E. K. Kohlmeir, H. Kissler, X. Zhang, D. B. Kaufman, A. E. Barron, and T. J. Meade. Protein polymer MRI contrast agents: longitudinal analysis of biomaterials in vivo. Magn. Reson. Med. 65:220–228, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim, K., C. G. Jeong, and S. J. Hollister. Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging. Acta Biomater. 4:783–790, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kim, S., J. H. Lee, H. Hyun, Y. Ashitate, G. Park, K. Robichaud, E. Lunsford, S. J. Lee, G. Khang, and H. Choi. Near-infrared fluorescence imaging for noninvasive trafficking of scaffold degradation. Scientific Rep. 3:1–7, 2013.Google Scholar
  27. 27.
    Lammers, G., P. D. Verhaegen, M. M. Ulrich, J. Schalkwijk, E. Middelkoop, D. Weiland, S. T. Nillesen, T. H. Van Kuppevelt, and W. F. Daamen. An overview of methods for the in vivo evaluation of tissue-engineered skin constructs. Tissue Eng. Part B 17:33–55, 2011.CrossRefGoogle Scholar
  28. 28.
    Lewis, R. A. Medical phase contrast x-ray imaging: current status and future prospects. Phys. Med. Biol. 49:3573–3583, 2004.CrossRefPubMedGoogle Scholar
  29. 29.
    Liang, Y., A. Bar-Shir, X. Song, A. A. Gilad, P. Walczak, and J. W. Bulte. Label-free imaging of gelatin-containing hydrogel scaffolds. Biomaterials 42:144–150, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lim, H., Y. Park, H. Cho, U. Je, D. Hong, C. Park, T. Woo, M. Lee, J. Kim, and N. Chung. Experimental setup and the system performance for single-grid-based phase-contrast x-ray imaging (PCXI) with a microfocus x-ray tube. Opt. Commun. 348:85–89, 2015.CrossRefGoogle Scholar
  31. 31.
    Mercado K. P., M. Helguera, D. C. Hocking and D. Dalecki. Noninvasive quantitative imaging of collagen microstructure in three-dimensional hydrogels using high-frequency ultrasound. Tissue Eng. Part C Methods 2015.Google Scholar
  32. 32.
    Mollenhauer, J., M. E. Aurich, Z. Zhong, C. Muehleman, A. A. Cole, M. Hasnah, O. Oltulu, K. E. Kuettner, A. Margulis, and L. D. Chapman. Diffraction-enhanced X-ray imaging of articular cartilage. Osteoarthr. Cartil. 10:163–171, 2002.CrossRefPubMedGoogle Scholar
  33. 33.
    Nam, S. Y., L. M. Ricles, L. J. Suggs, and S. Y. Emelianov. Imaging strategies for tissue engineering applications. Tissue Eng. Part B Rev. 21:88–102, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Paganin, D. M. Coherent X-Ray Optics. Oxford: Oxford University Press, p. 411, 2006.CrossRefGoogle Scholar
  35. 35.
    Ramaswamy, S., D. A. Wang, K. W. Fishbein, J. H. Elisseeff, and R. G. Spencer. An analysis of the integration between articular cartilage and nondegradable hydrogel using magnetic resonance imaging. J. Biomed. Mater. Res. Part B 77:144–148, 2006.CrossRefGoogle Scholar
  36. 36.
    Sciarretta, F. 5 to 8 years follow-up of knee chondral defects treated by PVA-H hydrogel implants. Eur. Rev. Med. Pharmacol. Sci. 17:3031–3038, 2013.PubMedGoogle Scholar
  37. 37.
    Smith, L. E., M. Bonesi, R. Smallwood, S. J. Matcher, and S. MacNeil. Using swept-source optical coherence tomography to monitor the formation of neo-epidermis in tissue-engineered skin. J. Tissue Eng. Regen. Med. 4:652–658, 2010.CrossRefPubMedGoogle Scholar
  38. 38.
    Sumner, J. P., R. J. Hardie, J. N. Henningson, R. Drees, M. D. Markel, and D. Bjorling. Evaluation of submucosally injected polyethylene glycol-based hydrogel and bovine cross-linked collagen in the canine urethra using cystoscopy, magnetic resonance imaging and histopathology. Vet. Surg. 41:655–663, 2012.CrossRefPubMedGoogle Scholar
  39. 39.
    Traoré, A., S. Woerly, V. Doan, Y. Marois, and R. Guidoin. In vivo magnetic resonance imaging and relaxometry study of a porous hydrogel implanted in the trapezius muscle of rabbits. Tissue Eng. 6:265–278, 2000.CrossRefPubMedGoogle Scholar
  40. 40.
    van Zijl, P. C., and N. N. Yadav. Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn. Reson. Med. 65:927–948, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wang, Z., H. Pan, Z. Yuan, J. Liu, W. Chen, and Y. Pan. Assessment of dermal wound repair after collagen implantation with optical coherence tomography. Tissue Eng. Part C 14:35–45, 2008.CrossRefGoogle Scholar
  42. 42.
    Werkmeister, E., D. Dumas, N. de Isla, L. Marchal, and J. F. Stoltz. Interest of multimodal imaging in tissue engineering. Bio-Med. Mater. Eng. 18:329–333, 2008.Google Scholar
  43. 43.
    Wernick, M. N., O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman. Multiple-image radiography. Phys. Med. Biol. 48:3875–3895, 2003.CrossRefPubMedGoogle Scholar
  44. 44.
    Yoon, K.-H., J. H. Ryu, C. W. Jung, C. W. Ryu, Y. J. Kim, Y. M. Kwon, M. Park, S. Cho, and K. S. Chon. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube. J. Korean Phys. Soc. 65:2111–2116, 2014.CrossRefGoogle Scholar
  45. 45.
    Yuan, Z., J. Zakhaleva, H. Ren, J. Liu, W. Chen, and Y. Pan. Noninvasive and high-resolution optical monitoring of healing of diabetic dermal excisional wounds implanted with biodegradable in situ gelable hydrogels. Tissue Eng. Part C 16:237–247, 2010.CrossRefGoogle Scholar
  46. 46.
    Zhang, Y., Y. Sun, X. Yang, J. Hilborn, A. Heerschap, and D. A. Ossipov. Injectable in situ forming hybrid iron oxide-hyaluronic acid hydrogel for magnetic resonance imaging and drug delivery. Macromol. Biosci. 14:1249–1259, 2014.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhong, Z., W. Thomlinson, D. Chapman, and D. Sayers. Implementation of diffraction-enhanced imaging experiments: at the NSLS and APS. Nucl. Instrum. Methods Phys. Res. Sect. A 450:556–567, 2000.CrossRefGoogle Scholar
  48. 48.
    Zhou W., K. Majidi and J. G. Brankov. Phase contrast imaging using a micro focus x-ray source. In: SPIE Optical Engineering + Applications. International Society for Optics and Photonics, 2014, p. 92070U-92070U-92078.Google Scholar
  49. 49.
    Zhu, N., D. Chapman, D. Cooper, D. J. Schreyer, and X. Chen. X-ray diffraction enhanced imaging as a novel method to visualize low-density scaffolds in soft tissue engineering. Tissue Eng. Part C 17:1071–1080, 2011.CrossRefGoogle Scholar
  50. 50.
    Ziv, K., H. Nuhn, Y. Ben-Haim, L. S. Sasportas, P. J. Kempen, T. P. Niedringhaus, M. Hrynyk, R. Sinclair, A. E. Barron, and S. S. Gambhir. A tunable silk-alginate hydrogel scaffold for stem cell culture and transplantation. Biomaterials 35:3736–3743, 2014.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Alyssa A. Appel
    • 1
    • 2
  • Jeffery C. Larson
    • 1
    • 2
  • Bin Jiang
    • 1
    • 2
  • Zhong Zhong
    • 3
  • Mark A. Anastasio
    • 4
  • Eric M. Brey
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoUSA
  2. 2.Research ServiceEdward Hines Jr. VA HospitalHinesUSA
  3. 3.National Synchrotron Light SourceBrookhaven National LaboratoryUptonUSA
  4. 4.Department of Biomedical EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations