Annals of Biomedical Engineering

, Volume 44, Issue 5, pp 1636–1645 | Cite as

Comparing Postural Stability Entropy Analyses to Differentiate Fallers and Non-fallers

  • Peter C. Fino
  • Ahmad R. Mojdehi
  • Khaled Adjerid
  • Mohammad Habibi
  • Thurmon E. Lockhart
  • Shane D. Ross


The health and financial cost of falls has spurred research to differentiate the characteristics of fallers and non-fallers. Postural stability has received much of the attention with recent studies exploring various measures of entropy. This study compared the discriminatory ability of several entropy methods at differentiating two paradigms in the center-of-pressure of elderly individuals: (1) eyes open (EO) vs. eyes closed (EC) and (2) fallers (F) vs. non-fallers (NF). Methods were compared using the area under the curve (AUC) of the receiver-operating characteristic curves developed from logistic regression models. Overall, multiscale entropy (MSE) and composite multiscale entropy (CompMSE) performed the best with AUCs of 0.71 for EO/EC and 0.77 for F/NF. When methods were combined together to maximize the AUC, the entropy classifier had an AUC of for 0.91 the F/NF comparison. These results suggest researchers and clinicians attempting to create clinical tests to identify fallers should consider a combination of every entropy method when creating a classifying test. Additionally, MSE and CompMSE classifiers using polar coordinate data outperformed rectangular coordinate data, encouraging more research into the most appropriate time series for postural stability entropy analysis.


Entropy RQA Fallers Elderly Sample entropy Multiscale entropy Approximate entropy Composite multiscale entropy 



Importantly, the authors want to thank Dr. Rahul Soangra, Dr. Han Yeoh, Dr. Jian Zhang, and Chris Frames, for collecting data, providing advice, and general troubleshooting, and Nora Fino for statistical consultation. This research was also supported by NSF-Information and Intelligent Systems (IIS) and Smart and Connected Health—1065442 and 1065262. The first author (PCF) was supported by a NSF Graduate Research Fellowship under Grant No. DGE 0822220. This comparative analysis was originally inspired by a project-based course exploring the frontiers of dynamical systems research, conducted by SDR under NSF Grant 1150456. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.


  1. 1.
    Ahmed, M. U., and D. P. Mandic. Multivariate multiscale entropy: a tool for complexity analysis of multichannel data. Phys. Rev. E 84:061918, 2011.CrossRefGoogle Scholar
  2. 2.
    Benjuya, N., I. Melzer, and J. Kaplanski. Aging-induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. J. Gerontol. Ser. A 59:M166–M171, 2004.CrossRefGoogle Scholar
  3. 3.
    Bergland, A., G.-B. Jarnlo, and K. Laake. Predictors of falls in the elderly by location. Aging Clin. Exp. Res. 15:43–50, 2003.CrossRefPubMedGoogle Scholar
  4. 4.
    Borg, F. G., and G. Laxåback. Entropy of balance—some recent results. J. Neuroeng. Rehabil. 7:38, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Boulgarides, L. K., S. M. McGinty, J. A. Willett, and C. W. Barnes. Use of clinical and impairment-based tests to predict falls by community-dwelling older adults. Phys. Ther. 83:328–339, 2003.PubMedGoogle Scholar
  6. 6.
    Bromiley, P., N. Thacker, and E. Bouhova-Thacker. Shannon entropy, Renyi entropy, and information. Statistics and Inf. Series (2004-004)., 2004.
  7. 7.
    Chiari, L., L. Rocchi, and A. Cappello. Stabilometric parameters are affected by anthropometry and foot placement. Clin. Biomech. 17:666–677, 2002.CrossRefGoogle Scholar
  8. 8.
    Costa, M., A. L. Goldberger, and C.-K. Peng. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89:068102, 2002.CrossRefPubMedGoogle Scholar
  9. 9.
    Costa, M., A. Priplata, L. Lipsitz, Z. Wu, N. Huang, A. Goldberger, and C.-K. Peng. Noise and poise: enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy. EPL Europhys. Lett. 77:68008, 2007.CrossRefPubMedGoogle Scholar
  10. 10.
    Gao, J., J. Hu, T. Buckley, K. White, and C. Hass. Shannon and Renyi entropies to classify effects of mild traumatic brain injury on postural sway. PLoS One 6:e24446, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Guskiewicz, K. M. Assessment of postural stability following sport-related concussion. Curr. Sports Med. Rep. 2:24–30, 2003.CrossRefPubMedGoogle Scholar
  12. 12.
    Guskiewicz, K. M., S. E. Ross, and S. W. Marshall. Postural stability and neuropsychological deficits after concussion in collegiate athletes. J. Athl. Train. 36:263, 2001.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hallal, C. Z., N. R. Marques, D. H. Spinoso, E. R. Vieira, and M. Gonçalves. Electromyographic patterns of lower limb muscles during apprehensive gait in younger and older female adults. J. Electromyogr. Kinesiol. 23:1145–1149, 2013.CrossRefPubMedGoogle Scholar
  14. 14.
    Hasson, C. J., R. E. Van Emmerik, G. E. Caldwell, J. M. Haddad, J. L. Gagnon, and J. Hamill. Influence of embedding parameters and noise in center of pressure recurrence quantification analysis. Gait Posture. 27:416–422, 2008.CrossRefPubMedGoogle Scholar
  15. 15.
    Kirby, R. L., N. A. Price, and D. A. MacLeod. The influence of foot position on standing balance. J. Biomech. 20:423–427, 1987.CrossRefPubMedGoogle Scholar
  16. 16.
    Kuznetsov, N., S. Bonnette, J. Gao, and M. A. Riley. Adaptive fractal analysis reveals limits to fractal scaling in center of pressure trajectories. Ann. Biomed. Eng. 41:1646–1660, 2013.CrossRefPubMedGoogle Scholar
  17. 17.
    Lake, D. E., J. S. Richman, M. P. Griffin, and J. R. Moorman. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283:R789–R797, 2002.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu, Q., Q. Wei, S.-Z. Fan, C.-W. Lu, T.-Y. Lin, M. F. Abbod, and J.-S. Shieh. Adaptive computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia during surgery. Entropy 14:978–992, 2012.CrossRefGoogle Scholar
  19. 19.
    Lord, S. R., and H. B. Menz. Visual contributions to postural stability in older adults. Gerontology 46:306–310, 2000.CrossRefPubMedGoogle Scholar
  20. 20.
    Maki, B. E., P. J. Holliday, and A. K. Topper. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J. Gerontol. 49:M72–M84, 1994.CrossRefPubMedGoogle Scholar
  21. 21.
    Marwan, N., M. Carmen Romano, M. Thiel, and J. Kurths. Recurrence plots for the analysis of complex systems. Phys. Rep. 438:237–329, 2007.CrossRefGoogle Scholar
  22. 22.
    McIlroy, W., and B. Maki. Preferred placement of the feet during quiet stance: development of a standardized foot placement for balance testing. Clin. Biomech. 12:66–70, 1997.CrossRefGoogle Scholar
  23. 23.
    Morrison, S., S. R. Colberg, H. K. Parson, and A. I. Vinik. Relation between risk of falling and postural sway complexity in diabetes. Gait Posture. 35:662–668, 2012.CrossRefPubMedGoogle Scholar
  24. 24.
    Nagai, K., M. Yamada, K. Uemura, Y. Yamada, N. Ichihashi, and T. Tsuboyama. Differences in muscle coactivation during postural control between healthy older and young adults. Arch. Gerontol. Geriatr. 53:338–343, 2011.CrossRefPubMedGoogle Scholar
  25. 25.
    Nelson-Wong, E., R. Appell, M. McKay, H. Nawaz, J. Roth, R. Sigler, J. Third, and M. Walker. Increased fall risk is associated with elevated co-contraction about the ankle during static balance challenges in older adults. Eur. J. Appl. Physiol. 112:1379–1389, 2012.CrossRefPubMedGoogle Scholar
  26. 26.
    Norris, J. A., A. P. Marsh, I. J. Smith, R. I. Kohut, and M. E. Miller. Ability of static and statistical mechanics posturographic measures to distinguish between age and fall risk. J. Biomech. 38:1263–1272, 2005.CrossRefPubMedGoogle Scholar
  27. 27.
    Pajala, S., P. Era, M. Koskenvuo, J. Kaprio, T. Törmäkangas, and T. Rantanen. Force platform balance measures as predictors of indoor and outdoor falls in community-dwelling women aged 63–76 years. J. Gerontol. Ser. A 63:171–178, 2008.CrossRefGoogle Scholar
  28. 28.
    Piirtola, M., and P. Era. Force platform measurements as predictors of falls among older people—a review. Gerontology. 52:1–16, 2006.CrossRefPubMedGoogle Scholar
  29. 29.
    Pincus, S. M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88:2297–2301, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ramdani, S., G. Tallon, P. L. Bernard, and H. Blain. Recurrence quantification analysis of human postural fluctuations in older fallers and non-fallers. Ann. Biomed. Eng. 41:1713–1725, 2013.CrossRefPubMedGoogle Scholar
  31. 31.
    Rehman, N., and D. P. Mandic. Multivariate empirical mode decomposition. In: Proceedings of the Royal Society of London, 2009.Google Scholar
  32. 32.
    Rhea, C. K., T. A. Silver, S. L. Hong, J. H. Ryu, B. E. Studenka, C. M. Hughes, and J. M. Haddad. Noise and complexity in human postural control: interpreting the different estimations of entropy. PLoS One 6:e17696, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Richman, J. S., and J. R. Moorman. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278:H2039–H2049, 2000.PubMedGoogle Scholar
  34. 34.
    Ross, S. D., M. L. Tanaka, and C. Senatore. Detecting dynamical boundaries from kinematic data in biomechanics. Chaos: an Interdisciplinary. J. Nonlinear Sci. 20:017507, 2010.Google Scholar
  35. 35.
    Shannon, C. E. A mathematical theory of communication. ACM SIGMOBILE Mobile Comput. Commun. Rev. 5:3–55, 2001.CrossRefGoogle Scholar
  36. 36.
    Shumway-Cook, A., and M. Woollacott. Attentional demands and postural control: the effect of sensory context. J. Gerontol. Biol. Sci. Med. Sci. 55:M10, 2000.CrossRefGoogle Scholar
  37. 37.
    Tanaka, M. L., M. A. Nussbaum, and S. D. Ross. Evaluation of the threshold of stability for the human spine. J. Biomech. 42:1017–1022, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tanaka, M. L., and S. D. Ross. Separatrices and basins of stability from time series data: an application to biodynamics. Nonlinear Dyn. 58:1–21, 2009.CrossRefGoogle Scholar
  39. 39.
    Thapa, P. B., P. Gideon, K. G. Brockman, R. L. Fought, and W. A. Ray. Clinical and biomechanical measures of balance fall predictors in ambulatory nursing home residents. J. Gerontol. Ser. A 51:M239–M246, 1996.CrossRefGoogle Scholar
  40. 40.
    Webber, Jr, C. L., and J. P. Zbilut. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76:965–973, 1994.PubMedGoogle Scholar
  41. 41.
    Wu, S.-D., C.-W. Wu, S.-G. Lin, C.-C. Wang, and K.-Y. Lee. Time series analysis using composite multiscale entropy. Entropy 15:1069–1084, 2013.CrossRefGoogle Scholar
  42. 42.
    Zweig, M. H., and G. Campbell. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39:561–577, 1993.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Peter C. Fino
    • 1
  • Ahmad R. Mojdehi
    • 2
  • Khaled Adjerid
    • 2
  • Mohammad Habibi
    • 2
  • Thurmon E. Lockhart
    • 3
  • Shane D. Ross
    • 2
  1. 1.Department of Mechanical EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Department of Biomedical Engineering and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.School of Biological and Health Systems Engineering, Ira A. Fulton Schools of EngineeringArizona State UniversityTempeUSA

Personalised recommendations