Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 5, pp 1685–1697 | Cite as

Surface and Subsurface Analyses of Metal-on-Polyethylene Total Hip Replacement Retrievals

  • Vicky Vuong
  • Maria Pettersson
  • Cecilia Persson
  • Sune Larsson
  • Kathryn Grandfield
  • Håkan Engqvist
Article

Abstract

Metal-on-polyethylene (MoP) articulations are one of the most reliable implanted hip prostheses. Unfortunately, long-term failure remains an obstacle to the service life. There is a lack of higher resolution research investigating the metallic surface component of MoP hip implants. This study investigates the surface and subsurface features of metallic cobalt chromium molybdenum alloy (CoCrMo) femoral head components from failed MoP retrievals. Unused prostheses were used for comparison to differentiate between wear-induced defects and imperfections incurred during implant manufacturing. The predominant scratch morphology observed on the non-implanted references was shallow and linear, whereas the scratches on the retrievals consisted of largely nonlinear, irregular scratches of varying depth (up to 150 nm in retrievals and up to 60 nm in reference samples). Characteristic hard phases were observed on the surface and subsurface material of the cast samples. Across all samples, a 100–400 nm thick nanocrystalline layer was visible in the immediate subsurface microstructure. Although observation of the nanocrystalline layer has been reported in metal-on-metal articulations, its presence in MoP retrievals and unimplanted prostheses has not been extensively examined. The results suggest that manufacturing-induced surface and subsurface microstructural features are present in MoP hip prostheses prior to implantation and naturally, these imperfections may influence the in vivo wear processes after implantation.

Keywords

Hip implant retrievals Cobalt chromium Metal-on-polymer Transmission electron microscopy Biotribology Electron microscopy 

Notes

Acknowledgments

Funding from the European Union’s Seventh Framework Programme (FP7/2007-2013), under Grant Agreement No. GA-310477 is gratefully acknowledged. Funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Program and the European Union’s Seventh Framework Programme (FP7/2007-2013), under Grant Agreement No. GA-310477 is gratefully acknowledged. Electron microscopy was performed at the Canadian Centre for Electron Microscopy at McMaster University, a facility supported by NSERC and other government agencies.

References

  1. 1.
    Affatato, S., M. Zavalloni, P. Taddei, M. Di Foggia, C. Fagnano, and M. Viceconti. Comparative study on the wear behaviour of different conventional and cross-linked polyethylenes for total hip replacement. Tribol. Int. 41(8):813–822, 2008. doi: 10.1016/j.triboint.2008.02.006.CrossRefGoogle Scholar
  2. 2.
    Alhassan, S., and T. Goswami. Wear rate model for UHMWPE in total joint applications. Wear 265(1–2):8–13, 2008. doi: 10.1016/j.wear.2007.08.017.CrossRefGoogle Scholar
  3. 3.
    Anissian, H. L., A. Stark, V. Good, H. Dahlstrand, and I. C. Clarke. The wear pattern in metal-on-metal hip prostheses. J. Biomed. Mater. Res. 58(6):673–678, 2001. doi: 10.1002/jbm.1068.CrossRefPubMedGoogle Scholar
  4. 4.
    Bettini, E., T. Eriksson, M. Boström, C. Leygraf, and J. Pan. Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM: TEM and AFM studies. Electrochim. Acta 56(25):9413–9419, 2011. doi: 10.1016/j.electacta.2011.08.028.CrossRefGoogle Scholar
  5. 5.
    Bhatt, H., and T. Goswami. Implant wear mechanisms—basic approach. Biomed. Mater. 3(4):042001, 2008. doi: 10.1088/1748-6041/3/4/042001.CrossRefPubMedGoogle Scholar
  6. 6.
    Bloebaum, R. D., L. Zou, K. N. Bachus, K. G. Shea, A. A. Hofmann, and H. K. Dunn. Analysis of particles in acetabular components from patients with osteolysis. Clin. Orthop. Relat. Res. 338:109–118, 1997.CrossRefPubMedGoogle Scholar
  7. 7.
    Briscoe, B. Tribology—friction and wear of engineering materials. Tribol. Int. 25:357, 1992. doi: 10.1016/0301-679X(92)90040-T.CrossRefGoogle Scholar
  8. 8.
    Brostow, W., B. P. Gorman, and O. Olea-Mejia. Focused ion beam milling and scanning electron microscopy characterization of polymer + metal hybrids. Mater. Lett. 61(6):1333–1336, 2007. doi: 10.1016/j.matlet.2006.07.026.CrossRefGoogle Scholar
  9. 9.
    Buford, A., and T. Goswami. Review of wear mechanisms in hip implants: paper I—general. Mater. Des. 25(5):385–393, 2004. doi: 10.1016/j.matdes.2003.11.010.CrossRefGoogle Scholar
  10. 10.
    Büscher, R., and A. Fischer. Metallurgical aspects of sliding wear of fcc materials for medical applications. Materwiss Werksttech. 2003(34):966–975, 1011. doi: 10.1002/mawe.200300680.Google Scholar
  11. 11.
    Büscher, R., G. Täger, W. Dudzinski, B. Gleising, M. A. Wimmer, and A. Fischer. Subsurface microstructure of metal-on-metal hip joints and its relationship to wear particle generation. J. Biomed. Mater. Res. B 72(1):206–214, 2005. doi: 10.1002/jbm.b.30132.CrossRefGoogle Scholar
  12. 12.
    Catelas, I., J. D. Bobyn, J. B. Medley, J. J. Krygier, D. J. Zukor, and O. L. Huk. Size, shape, and composition of wear particles from metal-metal hip simulator testing: effects of alloy and number of loading cycles. J. Biomed. Mater. Res. A 67(1):312–327, 2003. doi: 10.1002/jbm.a.10088.CrossRefPubMedGoogle Scholar
  13. 13.
    Cipriano, C. A., P. S. Issack, B. Beksac, A. G. Della Valle, T. P. Sculco, and E. A. Salvati. Metallosis after metal-on-polyethylene total hip arthroplasty. Am. J. Orthop. (Belle Mead NJ) 37:E18–E25, 2008.Google Scholar
  14. 14.
    Clarke, I. C., V. Good, P. Williams, et al. Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements. Proc. Inst. Mech. Eng. H 214(4):331–347, 2000. doi: 10.1243/0954411001535381.CrossRefPubMedGoogle Scholar
  15. 15.
    Delaunay, C., I. Petit, I. D. Learmonth, P. Oger, and P. A. Vendittoli. Metal-on-metal bearings total hip arthroplasty: the cobalt and chromium ions release concern. Orthop. Traumatol. Surg. Res. 96:894–904, 2010. doi: 10.1016/j.otsr.2010.05.008.CrossRefPubMedGoogle Scholar
  16. 16.
    Fischer, A. Subsurface microstructural alterations during sliding wear of biomedical metals. Modelling and experimental results. Comput. Mater. Sci. 46(3):586–590, 2009. doi: 10.1016/j.commatsci.2009.01.016.CrossRefGoogle Scholar
  17. 17.
    Goldsmith, A. A., D. Dowson, G. H. Isaac, and J. G. Lancaster. A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Proc. Inst. Mech. Eng. H 214:39–47, 2000.CrossRefPubMedGoogle Scholar
  18. 18.
    Heiner, A. D., A. L. Galvin, J. Fisher, J. J. Callaghan, and T. D. Brown. Scratching vulnerability of conventional vs highly cross-linked polyethylene liners because of large embedded third-body particles. J. Arthroplasty 27(5):742–749, 2012. doi: 10.1016/j.arth.2011.10.002.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Information CI for H. Hip and Knee Replacements in Canada: Canadian Joint Replacement Registry 2013 Annual Report, 2013.Google Scholar
  20. 20.
    Jacobs, J., A. Shanbhag, T. Glant, J. Black, and J. Galante. Wear debris in total joint replacements. J. Am. Acad. Orthop. Surg. 2:212–220, 1994. http://www.ncbi.nlm.nih.gov/pubmed/10709011.
  21. 21.
    JAMP-9500F Instruction manual.Google Scholar
  22. 22.
    Jenkins, P. J., N. D. Clement, D. F. Hamilton, P. Gaston, J. T. Patton, and C. R. Howie. Predicting the cost-effectiveness of total hip and knee replacement: a health economic analysis. J. Bone Joint Surg. B 95B(1):115–121, 2013. doi: 10.1302/0301-620X.95B1.29835.CrossRefGoogle Scholar
  23. 23.
    Kato, K. Classification of wear mechanisms/models. Proc. Inst. Mech. Eng. J. 216:349–355, 2002. doi: 10.1243/135065002762355280.CrossRefGoogle Scholar
  24. 24.
    Klapperich, C., J. Graham, L. Pruitt, and M. D. Ries. Failure of a metal-on-metal total hip arthroplasty from progressive osteolysis. J. Arthroplasty 14(7):877–881, 1999. doi: 10.1016/S0883-5403(99)90042-6.CrossRefPubMedGoogle Scholar
  25. 25.
    Kurtz, S. M., K. L. Ong, E. Lau, and K. J. Bozic. Impact of the economic downturn on total joint replacement demand in the United States Updated Projections to 2021. J. Bone Joint Surg. Am. 96(8):624–630, 2014.CrossRefPubMedGoogle Scholar
  26. 26.
    Liao, Y., R. Pourzal, P. Stemmer, et al. New insights into hard phases of CoCrMo metal-on-metal hip replacements. J. Mech. Behav. Biomed. Mater. 12:39–49, 2012. doi: 10.1016/j.jmbbm.2012.03.013.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liao, Y., R. Pourzal, M. A. Wimmer, J. J. Jacobs, A. Fischer, and L. D. Marks. Graphitic tribological layers in metal-on-metal hip replacements. Science 334(6063):1687–1690, 2011. doi: 10.1126/science.1213902.CrossRefPubMedGoogle Scholar
  28. 28.
    Lindgren, J. U., B. H. Brismar, and A. C. Wikstrom. Adverse reaction to metal release from a modular metal-on-polyethylene hip prosthesis. J. Bone Joint Surg. B 93:1427–1430, 2011. doi: 10.1302/0301-620X.93B10.27645.CrossRefGoogle Scholar
  29. 29.
    Mathew, M. T., C. Nagelli, R. Pourzal, et al. Tribolayer formation in a metal-on-metal (MoM) hip joint: an electrochemical investigation. J. Mech. Behav. Biomed. Mater. 29:199–212, 2014. doi: 10.1016/j.jmbbm.2013.08.018.CrossRefPubMedGoogle Scholar
  30. 30.
    Milosev, I., and M. Remskar. In vivo production of nanosized metal wear debris formed by tribochemical reaction as confirmed by high-resolution TEM and XPS analyses. J. Biomed. Mater. Res. A 91(4):1100–1110, 2009. doi: 10.1002/jbm.a.32301.CrossRefPubMedGoogle Scholar
  31. 31.
    Milošev, I., and H. H. Strehblow. The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochim. Acta 48:2767–2774, 2003. doi: 10.1016/S0013-4686(03)00396-7.CrossRefGoogle Scholar
  32. 32.
    Minakawa, H., M. H. Stone, B. M. Wroblewski, J. G. Lancaster, E. Ingham, and J. Fisher. Quantification of third-body damage and its effect on UHMWPE wear with different types of femoral head. J. Bone Joint Surg. B 80(5):894–899, 1998. doi: 10.1302/0301-620X.80B5.8675.CrossRefGoogle Scholar
  33. 33.
    Patten, E. W., E. Beitel, A. Swan, et al. Classification of scratches on retrieved cobalt chrome humeral heads using 3d profilometry. 58th Annual Meeting of the Orthopaedic Research Society 38 (1210): Poster No. 1210, 2012.Google Scholar
  34. 34.
    Pourzal, R., I. Catelas, R. Theissmann, C. Kaddick, and A. Fischer. Characterization of wear particles generated from CoCrMo alloy under sliding wear conditions. Wear 271(9–10):1658–1666, 2011. doi: 10.1016/j.wear.2010.12.045.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pourzal, R., M. Morlock, W. Ma, and A. Fischer. Are Micro-Structural Changes in MoM Hip Resurfacings Comparable to Total Hip Arthroplasties? Poster No. 2360. In: 55th Annual Meeting of the Orthopaedic Research Society (2360):2360, 2006.Google Scholar
  36. 36.
    Pourzal, R., R. Theissmann, M. Morlock, and A. Fischer. Micro-structural alterations within different areas of articulating surfaces of a metal-on-metal hip resurfacing system. Wear 267(5–8):689–694, 2009. doi: 10.1016/j.wear.2009.01.012.CrossRefGoogle Scholar
  37. 37.
    Pourzal, R., R. Theissmann, S. Williams, B. Gleising, J. Fisher, and A. Fischer. Subsurface changes of a MoM hip implant below different contact zones. J. Mech. Behav. Biomed. Mater. 2(2):186–191, 2009. doi: 10.1016/j.jmbbm.2008.08.002.CrossRefPubMedGoogle Scholar
  38. 38.
    Rogmark, C. and O. Rolfson. Swedish Hip Arthroplasty Register 2012.Google Scholar
  39. 39.
    Shen, F.-W., and H. McKellop. Surface-gradient cross-linked polyethylene acetabular cups: oxidation resistance and wear against smooth and rough femoral balls. Clin. Orthop. Relat. Res. 430:80–88, 2005.CrossRefPubMedGoogle Scholar
  40. 40.
    Stemmer, P., R. Pourzal, Y. Liao, et al. In: Metal-On-Metal Total Hip Replacement Devices, edited by S. M. Kurtz, A. S. Greenwald, W. H. Mihalko, J. E. Lemons. 2013, pp. 1–17. doi: 10.1520/STP1560-EB.
  41. 41.
    Sun, D., J. A. Wharton, R. J. K. Wood, L. Ma, and W. M. Rainforth. Microabrasion–corrosion of cast CoCrMo alloy in simulated body fluids. Tribol. Int. 42(1):99–110, 2009. doi: 10.1016/j.triboint.2008.05.005.CrossRefGoogle Scholar
  42. 42.
    Tan, S. C. Effect of taper design on trunnionosis in metal on polyethylene total hip arthroplasty. J. Arthroplasty 30(7):1269–1272, 2015.CrossRefPubMedGoogle Scholar
  43. 43.
    Topolovec, M., A. Cör, and I. Milošev. Metal-on-metal vs. metal-on-polyethylene total hip arthroplasty tribological evaluation of retrieved components and periprosthetic tissue. J. Mech. Behav. Biomed. Mater. 34:243–252, 2014. doi: 10.1016/j.jmbbm.2014.02.018.CrossRefPubMedGoogle Scholar
  44. 44.
    Valero-Vidal, C., L. Casabán-Julián, I. Herraiz-Cardona, and A. Igual-Muñoz. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance. Mater. Sci. Eng. C 33(8):4667–4676, 2013. doi: 10.1016/j.msec.2013.07.041.CrossRefGoogle Scholar
  45. 45.
    Wimmer, M. A., A. Fischer, R. Büscher, et al. Wear mechanisms in metal-on-metal bearings: the importance of tribochemical reaction layers. J. Orthop. Res. 28(4):436–443, 2010. doi: 10.1002/jor.21020.PubMedGoogle Scholar
  46. 46.
    Wimmer, M. A., J. Loos, R. Nassutt, M. Heitkemper, and A. Fischer. The acting wear mechanisms on metal-on-metal hip joint bearings: in vitro results. Wear 250(1–12):129–139, 2001. doi: 10.1016/S0043-1648(01)00654-8.CrossRefGoogle Scholar
  47. 47.
    Wimmer, M. A., M. T. Mathew, M. P. Laurent, et al. Tribochemical reactions in metal-on-metal hip joints influence wear and corrosion. In: Met Total Hip Replace Devices, edited by S. M. Kurtz, A. S. Greenwald, W. H. Mihalko, J. E. Lemons 2013, pp. 1–18. doi: 10.1520/STP1560-EB.
  48. 48.
    Wimmer, M. A., C. Sprecher, R. Hauert, G. Täger, and A. Fischer. Tribochemical reaction on metal-on-metal hip joint bearings. Wear 255(7–12):1007–1014, 2003. doi: 10.1016/S0043-1648(03)00127-3.CrossRefGoogle Scholar
  49. 49.
    Wishart, N., R. Beaumont, E. Young, V. Mccormack, and M. Swanson. National Joint Registry: 11th Annual Report. 2014, December 2013.Google Scholar
  50. 50.
    Zeng, P., W. M. Rainforth, B. J. Inkson, and T. D. Stewart. Transmission electron microscopy analysis of worn alumina hip replacement prostheses. Acta Mater. 60:2061–2072, 2012. doi: 10.1016/j.actamat.2012.01.009.CrossRefGoogle Scholar
  51. 51.
    Zhu, Y. H., K. Y. Chiu, and W. M. Tang. Review article: polyethylene wear and osteolysis in total hip arthroplasty. J. Orthop. Surg. (Hong Kong). 9(1):91–99, 2001. http://www.ncbi.nlm.nih.gov/pubmed/12468851.

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Vicky Vuong
    • 1
  • Maria Pettersson
    • 2
  • Cecilia Persson
    • 2
  • Sune Larsson
    • 3
  • Kathryn Grandfield
    • 1
  • Håkan Engqvist
    • 2
  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Division of Applied Materials Science, Department of Engineering SciencesUppsala UniversityUppsalaSweden
  3. 3.Department of Surgical Sciences-OrthopaedicsUppsala University HospitalUppsalaSweden

Personalised recommendations