Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 1, pp 234–246 | Cite as

Patient-Specific Biomechanical Modeling of Bone Strength Using Statistically-Derived Fabric Tensors

  • Karim LekadirEmail author
  • Christopher Noble
  • Javad Hazrati-Marangalou
  • Corné Hoogendoorn
  • Bert van Rietbergen
  • Zeike A. Taylor
  • Alejandro F. Frangi
Computational Biomechanics for Patient-Specific Applications

Abstract

Low trauma fractures are amongst the most frequently encountered problems in the clinical assessment and treatment of bones, with dramatic health consequences for individuals and high financial costs for health systems. Consequently, significant research efforts have been dedicated to the development of accurate computational models of bone biomechanics and strength. However, the estimation of the fabric tensors, which describe the microarchitecture of the bone, has proven to be challenging using in vivo imaging. On the other hand, existing research has shown that isotropic models do not produce accurate predictions of stress states within the bone, as the material properties of the trabecular bone are anisotropic. In this paper, we present the first biomechanical study that uses statistically-derived fabric tensors for the estimation of bone strength in order to obtain patient-specific results. We integrate a statistical predictive model of trabecular bone microarchitecture previously constructed from a sample of ex vivo micro-CT datasets within a biomechanical simulation workflow. We assess the accuracy and flexibility of the statistical approach by estimating fracture load for two different databases and bone sites, i.e., for the femur and the T12 vertebra. The results obtained demonstrate good agreement between the statistically-driven and micro-CT-based estimates, with concordance coefficients of 98.6 and 95.5% for the femur and vertebra datasets, respectively.

Keywords

Bone fracture Finite element methods Bone microarchitecture Statistical predictive models Fracture load estimation 

Notes

Acknowledgment

The work of K. Lekadir was supported by a Juan de la Cierva research grant from the Spanish Ministry of Science and Innovation.

Conflict of Interest

Bert van Rietbergen is a consultant for Scanco Medical AG.

References

  1. 1.
    Abdi, H. Partial least squares regression (PLS-regression). Thousand Oaks: Sage, pp. 792–795, 2003.Google Scholar
  2. 2.
    Åkesson, K., D. Marsh, P. Mitchell, A. McLellan, J. Stenmark, D. Pierroz, C. Kyer, C. Cooper, and I. F. W. Group. Capture the fracture: a best practice framework and global campaign to break the fragility fracture cycle. Osteoporos. Int. 24:2135–2152, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Arlot, M. E., B. Burt-Pichat, J. P. Roux, D. Vashishth, M. L. Bouxsein, and P. D. Delmas. Microarchitecture influences microdamage accumulation in human vertebral trabecular bone. J. Bone Miner. Res. 23:1613–1618, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bayraktar, H. H., E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, and T. M. Keaveny. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37:27–35, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Bookstein, F. L. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11:567–585, 1989.CrossRefGoogle Scholar
  6. 6.
    Boutroy, S., M. L. Bouxsein, F. Munoz, and P. D. Delmas. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 90:6508–6515, 2005.PubMedCrossRefGoogle Scholar
  7. 7.
    Brandi, M. L. Microarchitecture, the key to bone quality. Rheumatology 48:iv3–iv8, 2009.PubMedCrossRefGoogle Scholar
  8. 8.
    Burrows, M., D. Liu, and H. McKay. High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos. Int. 21:515–520, 2010.PubMedCrossRefGoogle Scholar
  9. 9.
    Capture the fracture. Report 2012. International Osteoporosis Foundation, 2012.Google Scholar
  10. 10.
    Chappard, D., M.-F. Baslé, E. Legrand, and M. Audran. Trabecular bone microarchitecture: a review. Morphologie 92:162–170, 2008.PubMedCrossRefGoogle Scholar
  11. 11.
    Charlebois, M., M. Jirásek, and P. K. Zysset. A nonlocal constitutive model for trabecular bone softening in compression. Biomech. Model. Mechanobiol. 9:597–611, 2010.PubMedCrossRefGoogle Scholar
  12. 12.
    Cowin, S. C. The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4:137–147, 1985.CrossRefGoogle Scholar
  13. 13.
    Cowin, S. Wolff’s law of trabecular architecture at remodeling equilibrium. J. Biomech. Eng. 108:83–88, 1986.PubMedCrossRefGoogle Scholar
  14. 14.
    Cummings, S. R., and L. J. Melton. Epidemiology and outcomes of osteoporotic fractures. The Lancet 359:1761–1767, 2002.CrossRefGoogle Scholar
  15. 15.
    Dalle Carbonare, L., and S. Giannini. Bone microarchitecture as an important determinant of bone strength. J. Endocrinol. Invest. 27:99–105, 2004.PubMedCrossRefGoogle Scholar
  16. 16.
    Derikx, L. C., N. Verdonschot, and E. Tanck. Towards clinical application of biomechanical tools for the prediction of fracture risk in metastatic bone disease. J. Biomech. 48:761–766, 2015.PubMedCrossRefGoogle Scholar
  17. 17.
    Ding, M., A. Odgaard, and I. Hvid. Accuracy of cancellous bone volume fraction measured by micro-CT scanning. J. Biomech. 32:323–326, 1999.PubMedCrossRefGoogle Scholar
  18. 18.
    Dragomir-Daescu, D., J. Op Den Buijs, S. McEligot, Y. Dai, R. Entwistle, C. Salas, L. J. Melton, III, K. Bennet, S. Khosla, and S. Amin. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann. Biomed. Eng. 39:742–755, 2011.PubMedCrossRefGoogle Scholar
  19. 19.
    Freeman, W. T., E. C. Pasztor, and O. T. Carmichael. Learning low-level vision. Int. J. Comput. Vis. 40:25–47, 2000.CrossRefGoogle Scholar
  20. 20.
    Gail, M. H. Systematic Error. In: Encyclopedia of Biostatistics. New York: Wiley, 2005.Google Scholar
  21. 21.
    Genant, H., P. Delmas, P. Chen, Y. Jiang, E. Eriksen, G. Dalsky, R. Marcus, and J. San Martin. Severity of vertebral fracture reflects deterioration of bone microarchitecture. Osteoporos. Int. 18:69–76, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Gong, H., M. Zhang, Y. Fan, W. Kwok, and P. Leung. Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology. Ann. Biomed. Eng. 40:1575–1585, 2012.PubMedCrossRefGoogle Scholar
  23. 23.
    Goodall, C. Procrustes methods in the statistical analysis of shape. J. Royal Stat. Soc. B 53:285–339, 1991.Google Scholar
  24. 24.
    Grassi, L., N. Hraiech, E. Schileo, M. Ansaloni, M. Rochette, and M. Viceconti. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur. Med. Eng. Phys. 33:112–120, 2011.PubMedCrossRefGoogle Scholar
  25. 25.
    Hambli, R., and S. Allaoui. A robust 3D finite element simulation of human proximal femur progressive fracture under stance load with experimental validation. Ann. Biomed. Eng. 41:2515–2527, 2013.PubMedCrossRefGoogle Scholar
  26. 26.
    Hambli, R., A. Bettamer, and S. Allaoui. Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage. Med. Eng. Phys. 34:202–210, 2012.PubMedCrossRefGoogle Scholar
  27. 27.
    Harrigan, T., and R. Mann. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19:761–767, 1984.CrossRefGoogle Scholar
  28. 28.
    Hazrati-Marangalou, J., F. Eckstein, V. Kuhn, K. Ito, M. Cataldi, F. Taddei, and B. van Rietbergen. Locally measured microstructural parameters are better associated with vertebral strength than whole bone density. Osteoporos. Int. 25:1285–1296, 2014.PubMedCrossRefGoogle Scholar
  29. 29.
    Hazrati-Marangalou, J., K. Ito, M. Cataldi, F. Taddei, and B. van Rietbergen. A novel approach to estimate trabecular bone anisotropy using a database approach. J. Biomech. 46:2356–2362, 2013.PubMedCrossRefGoogle Scholar
  30. 30.
    Hazrati-Marangalou, J., K. Ito, F. Taddei, and B. van Rietbergen. Inter-individual variability of bone density and morphology distribution in the proximal femur and T12 vertebra. Bone 60:213–220, 2014.PubMedCrossRefGoogle Scholar
  31. 31.
    Hazrati-Marangalou, J., B. V. Rietbergen, and K. Ito. Database of Femur Samples. Eindhoven: Eindhoven University of Technology, 2013.Google Scholar
  32. 32.
    Hulme, P., S. Boyd, and S. Ferguson. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 41:946–957, 2007.PubMedCrossRefGoogle Scholar
  33. 33.
    Johnell, O., and J. Kanis. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 17:1726–1733, 2006.PubMedCrossRefGoogle Scholar
  34. 34.
    Juszczyk, M. M., L. Cristofolini, and M. Viceconti. The human proximal femur behaves linearly elastic up to failure under physiological loading conditions. J. Biomech. 44:2259–2266, 2011.PubMedCrossRefGoogle Scholar
  35. 35.
    Kersh, M. E., P. K. Zysset, D. H. Pahr, U. Wolfram, D. Larsson, and M. G. Pandy. Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J. Biomech. 46:2659–2666, 2013.PubMedCrossRefGoogle Scholar
  36. 36.
    Kirkup, L., and R. B. Frenkel. Systematic Errors. In: An Introduction to Uncertainty in Measurement. Cambridge: Cambridge University Press, pp. 83–96, 2006.Google Scholar
  37. 37.
    Kundu, A., S. K. Mitra, and P. Vaidyanathan. Application of two-dimensional generalized mean filtering for removal of impulse noises from images. IEEE Trans. Acoust. Speech Signal Process. 32:600–609, 1984.CrossRefGoogle Scholar
  38. 38.
    Larsson, D., B. Luisier, M. E. Kersh, E. Dall’Ara, P. K. Zysset, M. G. Pandy, and D. H. Pahr. Assessment of transverse isotropy in clinical-level CT Images of trabecular bone using the gradient structure tensor. Ann. Biomed. Eng. 42:950–959, 2014.PubMedCrossRefGoogle Scholar
  39. 39.
    Lawrence, I., and K. Lin. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268, 1989.CrossRefGoogle Scholar
  40. 40.
    Lekadir, K., J. Hazrati-Marangalou, C. Hoogendoorn, Z. Taylor, B. van Rietbergen, and A. F. Frangi. Statistical estimation of femur micro-architecture using optimal shape and density predictors. J. Biomech. 48:598–603, 2015.PubMedCrossRefGoogle Scholar
  41. 41.
    Liu, X. S., X. H. Zhang, K. K. Sekhon, M. F. Adams, D. J. McMahon, J. P. Bilezikian, E. Shane, and X. E. Guo. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J. Bone Miner. Res. 25:746–756, 2010.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Mc Donnell, P., P. Mc Hugh, and D. O’mahoney. Vertebral osteoporosis and trabecular bone quality. Ann. Biomed. Eng. 35:170–189, 2007.CrossRefGoogle Scholar
  43. 43.
    Modlesky, C. M., S. Majumdar, A. Narasimhan, and G. A. Dudley. Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J. Bone Miner. Res. 19:48–55, 2004.PubMedCrossRefGoogle Scholar
  44. 44.
    Nishiyama, K. K., S. Gilchrist, P. Guy, P. Cripton, and S. K. Boyd. Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration. J. Biomech. 46:1231–1236, 2013.PubMedCrossRefGoogle Scholar
  45. 45.
    Oñate, E., J. Rojek, R. L. Taylor, and O. C. Zienkiewicz. Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int. J. Numer. Meth. Eng. 59:1473–1500, 2004.CrossRefGoogle Scholar
  46. 46.
    Patel, T. K., M. D. Brodt, and M. J. Silva. Experimental and finite element analysis of strains induced by axial tibial compression in young-adult and old female C57Bl/6 mice. J. Biomech. 47:451–457, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Pennec, X., P. Fillard, and N. Ayache. A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66:41–66, 2006.CrossRefGoogle Scholar
  48. 48.
    Pistoia, W., B. Van Rietbergen, E.-M. Lochmüller, C. Lill, F. Eckstein, and P. Rüegsegger. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30:842–848, 2002.PubMedCrossRefGoogle Scholar
  49. 49.
    Polgar, K., M. Viceconti, and J. Connor. A comparison between automatically generated linear and parabolic tetrahedra when used to mesh a human femur. Proc. Inst. Mech. Eng. H 215:85–94, 2001.PubMedCrossRefGoogle Scholar
  50. 50.
    Polikeit, A., L. P. Nolte, and S. J. Ferguson. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine 28:991–996, 2003.PubMedGoogle Scholar
  51. 51.
    Rosipal, R., and L. J. Trejo. Kernel partial least squares regression in reproducing kernel Hilbert space. J. Mach. Learn. Res. 2:97–123, 2002.Google Scholar
  52. 52.
    Saha, P. K., and F. W. Wehrli. A robust method for measuring trabecular bone orientation anisotropy at in vivo resolution using tensor scale. Pattern Recog. 37:1935–1944, 2004.CrossRefGoogle Scholar
  53. 53.
    Schileo, E., F. Taddei, L. Cristofolini, and M. Viceconti. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J. Biomech. 41:356–367, 2008.PubMedCrossRefGoogle Scholar
  54. 54.
    Seeman, E., and P. D. Delmas. Bone quality—the material and structural basis of bone strength and fragility. New Engl. J. Med. 354:2250–2261, 2006.PubMedCrossRefGoogle Scholar
  55. 55.
    Sran, M. M., S. K. Boyd, D. M. Cooper, K. M. Khan, R. F. Zernicke, and T. R. Oxland. Regional trabecular morphology assessed by micro-CT is correlated with failure of aged thoracic vertebrae under a posteroanterior load and may determine the site of fracture. Bone 40:751–757, 2007.PubMedCrossRefGoogle Scholar
  56. 56.
    Steiner, J. A., S. J. Ferguson, and G. H. van Lenthe. Computational analysis of primary implant stability in trabecular bone. J. Biomech. 48:807–815, 2015.PubMedCrossRefGoogle Scholar
  57. 57.
    Tabor, Z., R. Petryniak, Z. Latała, and T. Konopka. The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone. Med. Eng. Phys. 35:7–15, 2013.PubMedCrossRefGoogle Scholar
  58. 58.
    Taylor, M., and P. J. Prendergast. Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities? J. Biomech. 48:767–778, 2015.PubMedCrossRefGoogle Scholar
  59. 59.
    Tomaszewski, P. K., N. Verdonschot, S. K. Bulstra, and G. J. Verkerke. A comparative finite-element analysis of bone failure and load transfer of osseointegrated prostheses fixations. Ann. Biomed. Eng. 38:2418–2427, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Travert, C., N. Vilayphiou, H. Follet, and W. Skalli. Finite element vertebral model for fracture risk prediction: comparison of a full CT-based model versus two media simplified model, a preliminary study. Comput. Meth. Biomech. Biomed. Eng. 15:81–82, 2012.CrossRefGoogle Scholar
  61. 61.
    Varga, P., and P. Zysset. Sampling sphere orientation distribution: an efficient method to quantify trabecular bone fabric on grayscale images. Med. Image Anal. 13:530–541, 2009.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang, X., A. Sanyal, P. M. Cawthon, L. Palermo, M. Jekir, J. Christensen, K. E. Ensrud, S. R. Cummings, E. Orwoll, and D. M. Black. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J. Bone Miner. Res. 27:808–816, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zou, W. W., and P. C. Yuen. Very low resolution face recognition problem. IEEE Trans. Image Proc. 21:327–340, 2012.CrossRefGoogle Scholar
  64. 64.
    Zysset, P., and A. Curnier. An alternative model for anisotropic elasticity based on fabric tensors. Mech. Mater. 21:243–250, 1995.CrossRefGoogle Scholar
  65. 65.
    Zysset, P., M. Ominsky, and S. Goldstein. A novel 3D microstructural model for trabecular bone: I. The relationship between fabric and elasticity. Comput. Meth. Biomech. Biomed. Eng. 1:321–331, 1998.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Karim Lekadir
    • 1
    • 2
    Email author
  • Christopher Noble
    • 1
    • 3
  • Javad Hazrati-Marangalou
    • 5
  • Corné Hoogendoorn
    • 1
    • 2
  • Bert van Rietbergen
    • 5
  • Zeike A. Taylor
    • 1
    • 3
  • Alejandro F. Frangi
    • 1
    • 4
  1. 1.Center for Computational Imaging & Simulation Technologies in BiomedicineUniversity of SheffieldSheffieldUnited Kingdom
  2. 2.Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
  3. 3.Department of Mechanical EngineeringUniversity of SheffieldSheffieldUnited Kingdom
  4. 4.Department of Electronic and Electrical EngineeringUniversity of SheffieldSheffieldUnited Kingdom
  5. 5.Orthopaedic Biomechanics, Biomedical Engineering DepartmentEindhoven UniversityEindhovenNetherlands

Personalised recommendations