Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 2, pp 590–603 | Cite as

Fluid–Structure Interaction Model of a Percutaneous Aortic Valve: Comparison with an In Vitro Test and Feasibility Study in a Patient-Specific Case

  • Wei Wu
  • Desiree Pott
  • Beniamino Mazza
  • Tommaso Sironi
  • Elena Dordoni
  • Claudio Chiastra
  • Lorenza Petrini
  • Giancarlo Pennati
  • Gabriele Dubini
  • Ulrich Steinseifer
  • Simon Sonntag
  • Maximilian Kuetting
  • Francesco MigliavaccaEmail author
Medical Stents: State of the Art and Future Directions

Abstract

Transcatheter aortic valve replacement (TAVR) represents an established recent technology in a high risk patient base. To better understand TAVR performance, a fluid–structure interaction (FSI) model of a self-expandable transcatheter aortic valve was proposed. After an in vitro durability experiment was done to test the valve, the FSI model was built to reproduce the experimental test. Lastly, the FSI model was used to simulate the virtual implant and performance in a patient-specific case. Results showed that the leaflet opening area during the cycle was similar to that of the in vitro test and the difference of the maximum leaflet opening between the two methodologies was of 0.42%. Furthermore, the FSI simulation quantified the pressure and velocity fields. The computed strain amplitudes in the stent frame showed that this distribution in the patient-specific case is highly affected by the aortic root anatomy, suggesting that the in vitro tests that follow standards might not be representative of the real behavior of the percutaneous valve. The patient-specific case also compared in vivo literature data on fast opening and closing characteristics of the aortic valve during systolic ejection. FSI simulations represent useful tools in determining design errors or optimization potentials before the fabrication of aortic valve prototypes and the performance of tests.

Keywords

Fluid–structure interaction Valve mechanics Mathematical models Stent Transcatheter aortic valve 

Notes

Acknowledgements

Wei Wu is supported by the Politecnico di Milano International Fellowships Program (PIF). Claudio Chiastra is partially supported by the ERC starting Grant (310457, BioCCora). Desiree Pott is supported by the Deutsche Forschungsgemeinschaft (DFG) Grant STE1680/5-1.

Conflict of interests

There is no conflict of interests.

References

  1. 1.
    Astorino, M., J.-F. Gerbeau, O. Pantz, and K.-F. Traore. Fluid-structure interaction and multi-body contact: application to aortic valves. Comput. Methods Appl. Mech. Eng. 198:3603–3612, 2009.CrossRefGoogle Scholar
  2. 2.
    Azadani, A. N., N. Jaussaud, P. B. Matthews, L. Ge, T. S. Guy, T. A. M. Chuter, and E. E. Tseng. Energy loss due to paravalvular leak with transcatheter aortic valve implantation. Ann. Thorac. Surg. 88:1857–1863, 2009.CrossRefPubMedGoogle Scholar
  3. 3.
    Bianchi M., R. Ghosh, D. Das, G. Marom, T. Claiborne, M. Slepian, and D. Bluenstein. Transcatheter aortic valve replacement model: crimping and deploying in patient-pathology specific roots. In: Summer Biomechanics, Bioengineering and Biotransport Conference. Utah: Snowbird Resort, 2015.Google Scholar
  4. 4.
    Bonhoeffer, P., Y. Boudjemline, Z. Saliba, J. Merckx, Y. Aggoun, D. Bonnet, P. Acar, J. Le Bidois, D. Sidi, and J. Kachaner. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356:1403–1405, 2000.CrossRefPubMedGoogle Scholar
  5. 5.
    Bosi, G. M., C. Capelli, S. Khambadkone, A. M. Taylor, and S. Schievano. Patient-specific finite element models to support clinical decisions: a lesson learnt from a case study of percutaneous pulmonary valve implantation. Catheter. Cardiovasc. Interv. 2015. doi: 10.1002/ccd.25944.PubMedGoogle Scholar
  6. 6.
    Capelli, C., G. M. Bosi, E. Cerri, J. Nordmeyer, T. Odenwald, P. Bonhoeffer, F. Migliavacca, A. M. Taylor, and S. Schievano. Patient-specific simulations of transcatheter aortic valve stent implantation. Med. Biol. Eng. Comput. 50:183–192, 2012.CrossRefPubMedGoogle Scholar
  7. 7.
    Carmody, C. J., G. Burriesci, I. C. Howard, and E. A. Patterson. An approach to the simulation of fluid–structure interaction in the aortic valve. J. Biomech. 39:158–169, 2006.CrossRefPubMedGoogle Scholar
  8. 8.
    Chandra, S., N. M. Rajamannan, and P. Sucosky. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech. Model. Mechanobiol. 11:1085–1096, 2012.CrossRefPubMedGoogle Scholar
  9. 9.
    Cho, Y.-I., and D. J. Cho. Hemorheology and microvascular disorders. Korean Circ. J. 41:287–295, 2011.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Cosentino, D., M. A. Quail, G. Pennati, C. Capelli, P. Bonhoeffer, V. Diaz-Zuccarini, A. M. Taylor, and S. Schievano. Geometrical and stress analysis of factors associated with stent fracture after melody percutaneous pulmonary valve implantation. Circ. Cardiovasc. Interv. 7:510–517, 2014.CrossRefPubMedGoogle Scholar
  11. 11.
    Cribier, A., H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis—first human case description. Circulation 106:3006–3008, 2002.CrossRefPubMedGoogle Scholar
  12. 12.
    De Hart, J., F. P. T. Baaijens, G. W. M. Peters, and P. J. G. Schreurs. A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36:699–712, 2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Dwyer, H. A., P. B. Matthews, A. Azadani, N. Jaussaud, L. Ge, T. S. Guy, and E. E. Tseng. Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interact. Cardiovasc. Thorac. Surg. 9:301–308, 2009.CrossRefPubMedGoogle Scholar
  14. 14.
    Esterhuyse, A., K. Van Der Westhuizen, A. Doubell, H. Weich, C. Scheffer, and K. Dellimore. Application of the finite element method in the fatigue life prediction of a stent for a percutaneous heart valve. J. Mech. Med. Biol. 12:1250007, 2012. doi: 10.1142/S021951941200448X.CrossRefGoogle Scholar
  15. 15.
    Griffith, B. E. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28:317–345, 2012.CrossRefGoogle Scholar
  16. 16.
    Grube, E., J. C. Laborde, U. Gerckens, T. Felderhoff, B. Sauren, L. Buellesfeld, R. Mueller, M. Menichelli, T. Schmidt, B. Zickmann, S. Iversen, and G. W. Stone. Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease—the Siegburg first-in-man study. Circulation 114:1616–1624, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Gunning, P. S., T. J. Vaughan, and L. M. McNamara. Simulation of self expanding transcatheter aortic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation. Ann. Biomed. Eng. 42:1989–2001, 2014.CrossRefPubMedGoogle Scholar
  18. 18.
    Hsu, M.-C., D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput. Mech. 54:1055–1071, 2014.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Laflamme, J., R. Puri, M. Urena, L. Laflamme, H. DeLarochelliere, O. A.-J. Altisent, M. del Trigo, F. Campelo-Parada, R. DeLarochelliere, J.-M. Paradis, E. Dumont, D. Doyle, S. Mohammadi, M. Cote, P. Pibarot, V. Laroche, and J. Rodes-Cabau. Incidence and risk factors of hemolysis after transcatheter aortic valve implantation with a balloon-expandable valve. Am. J. Cardiol. 115:1574–1579, 2015.CrossRefPubMedGoogle Scholar
  20. 20.
    Lau, K. D., V. Diaz, P. Scambler, and G. Burriesci. Mitral valve dynamics in structural and fluid–structure interaction models. Med. Eng. Phys. 32:1057–1064, 2010.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Leyh, R. G., C. Schmidtke, H. H. Sievers, and M. H. Yacoub. Opening and closing characteristics of the aortic valve after different types of valve-preserving surgery. Circulation 100:2153–2160, 1999.CrossRefPubMedGoogle Scholar
  22. 22.
    Marom, G., R. Haj-Ali, E. Raanani, H.-J. Schaefers, and M. Rosenfeld. A fluid–structure interaction model of the aortic valve with coaptation and compliant aortic root. Med. Biol. Eng. Comput. 50:173–182, 2012.CrossRefPubMedGoogle Scholar
  23. 23.
    Morganti, S., M. Conti, M. Aiello, A. Valentini, A. Mazzola, A. Reali, and F. Auricchio. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases. J. Biomech. 47:2547–2555, 2014.CrossRefPubMedGoogle Scholar
  24. 24.
    Nobari, S., R. Mongrain, E. Gaillard, R. Leask, and R. Cartier. Therapeutic vascular compliance change may cause significant variation in coronary perfusion: a numerical study. Comput. Math. Methods Med. 2012:791686, 2012.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Pelton, A. R., V. Schroeder, M. R. Mitchell, X.-Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2008.CrossRefPubMedGoogle Scholar
  26. 26.
    Petrini, L., W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, and G. Pennati. Fatigue behavior characterization of nitinol for peripheral stents. Funct. Mater. Lett. 5:1250012, 2012.CrossRefGoogle Scholar
  27. 27.
    Pibarot, P., D. Garcia, and J. G. Dumesnil. Energy loss index in aortic stenosis from fluid mechanics concept to clinical application. Circulation 127:1101–1104, 2013.CrossRefPubMedGoogle Scholar
  28. 28.
    Puso, M. A., J. Sanders, R. Settgast, and B. Liu. An embedded mesh method in a multiple material ALE. Comput. Methods Appl. Mech. Eng. 245:273–289, 2012.CrossRefGoogle Scholar
  29. 29.
    Ranga, A., O. Bouchot, R. Mongrain, P. Ugolini, and R. Cartier. Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact. Cardiovasc. Thorac. Surg. 5:373–378, 2006.CrossRefPubMedGoogle Scholar
  30. 30.
    Schievano, S., A. M. Taylor, C. Capelli, P. Lurz, J. Nordmeyer, F. Migliavacca, and P. Bonhoeffer. Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J. Biomech. 43:687–693, 2010.CrossRefPubMedGoogle Scholar
  31. 31.
    Sirois, E., Q. Wang, and W. Sun. Fluid simulation of a transcatheter aortic valve deployment into a patient-specific aortic root. Cardiovasc. Eng. Technol. 2:186–195, 2011.CrossRefGoogle Scholar
  32. 32.
    Smuts, A. N., D. C. Blaine, C. Scheffer, H. Weich, A. F. Doubell, and K. H. Dellimore. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J. Mech. Behav. Biomed. Mater. 4:85–98, 2011.CrossRefPubMedGoogle Scholar
  33. 33.
    Sonntag, S. J., T. A. S. Kaufmann, M. R. Buesen, M. Laumen, T. Linde, T. Schmitz-Rode, and U. Steinseifer. Simulation of a pulsatile total artificial heart: development of a partitioned fluid structure interaction model. J. Fluids Struct. 38:187–204, 2013.CrossRefGoogle Scholar
  34. 34.
    Stahli, B. E., W. Maier, R. Corti, T. F. Luscher, R. Jenni, and F. C. Tanner. Aortic regurgitation after transcatheter aortic valve implantation: mechanisms and implications. Cardiovasc. Diagn. Ther. 3:15–22, 2013.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Stühle, S., D. Wendt, G. Houl, H. Wendt, M. Schlamann, M. Thielmann, H. Jakob, and W. Kowalczyk. In-vitro investigation of the hemodynamics of the Edwards Sapien (TM) transcatheter heart valve. J. Heart Valve Dis. 20:53–63, 2011.PubMedGoogle Scholar
  36. 36.
    Sturla, F., E. Votta, M. Stevanella, C. A. Conti, and A. Redaelli. Impact of modeling fluid–structure interaction in the computational analysis of aortic root biomechanics. Med. Eng. Phys. 35:1721–1730, 2013.CrossRefPubMedGoogle Scholar
  37. 37.
    Sun, W., K. Li, and E. Sirois. Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J. Biomech. 43:3085–3090, 2010.CrossRefPubMedGoogle Scholar
  38. 38.
    Toggweiler, S., K. H. Humphries, M. Lee, R. K. Binder, R. R. Moss, M. Freeman, J. Ye, A. Cheung, D. A. Wood, and J. G. Webb. 5-Year outcome after transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 61:413–419, 2013.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang, Q., S. Kodali, C. Primiano, and W. Sun. Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomech. Model. Mechanobiol. 14:29–38, 2015.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Webb, J. G., and D. A. Wood. Current status of transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 60:483–492, 2012.CrossRefPubMedGoogle Scholar
  41. 41.
    Weinberg, E. J., and M. R. K. Mofrad. Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc. Eng. 7:140–155, 2007.CrossRefPubMedGoogle Scholar
  42. 42.
    Weinberg, E. J., and M. R. K. Mofrad. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41:3482–3487, 2008.CrossRefPubMedGoogle Scholar
  43. 43.
    Weinberg, E. J., P. J. Mack, F. J. Schoen, G. Garcia-Cardena, and M. R. K. Mofrad. Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. Cardiovasc. Eng. 10:5–11, 2010.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Wei Wu
    • 1
  • Desiree Pott
    • 2
  • Beniamino Mazza
    • 1
  • Tommaso Sironi
    • 1
  • Elena Dordoni
    • 1
  • Claudio Chiastra
    • 1
    • 3
  • Lorenza Petrini
    • 4
  • Giancarlo Pennati
    • 1
  • Gabriele Dubini
    • 1
  • Ulrich Steinseifer
    • 2
  • Simon Sonntag
    • 2
  • Maximilian Kuetting
    • 2
  • Francesco Migliavacca
    • 1
    Email author
  1. 1.Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’Politecnico di MilanoMilanItaly
  2. 2.Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz-InstituteRWTH Aachen UniversityAachenGermany
  3. 3.Department of Biomedical Engineering, ThoraxcenterErasmus University Medical CenterRotterdamThe Netherlands
  4. 4.Department of Civil and Environmental EngineeringPolitecnico di MilanoMilanItaly

Personalised recommendations